
Robin Sharp
Informatics and Mathematical Modelling

Technical University of Denmark
Phone: (+45) 4525 3749

e-mail: robin@imm.dtu.dk

Socket Programming

Autumn 2008 Socket Programming ©Robin Sharp 2

Application Layer protocols

Are based on a (more or less reliable) Transport
service — in the Internet, typically provided by TCP
or UDP.
May support various ways of organising an
application. Common examples:

Peer-to-peer: Two or more participants with equal status.
Client/server: Two participants. One party (server) offers
services to the other (client).
Agent-based: Several parties collaborate in an “intelligent”
way.
Grid: (Very) large number of parties offer services, and
system will find the most appropriate one.

We focus here on Client/server systems.

Autumn 2008 Socket Programming ©Robin Sharp 3

Simple Socket Programming

Internet Client/server applications are based on communication
between suitable ports in the client and server systems.
Sockets offer a programming abstraction of endpoints of
communication channels, such as ports.
Classic example: BSD TCP/IP Sockets, with operations:
Primitive Semantics C S
socket Create new communication endpoint + +
bind Associate local IP addr. + port with socket + +
listen Announce willingness to accept connections +
accept Block caller until conn. request arrives +
connect Initiate establishment of connection +
write/send Send data over connection + +
read/recv Receive data over connection + +
close Release connection + +

C: in client S: in server

Autumn 2008 Socket Programming ©Robin Sharp 4

Java Client Sockets

Objects of the class java.net.Socket
Assume underlying communication protocol is TCP.

If UDP is required, use class DatagramSocket.
If multicast is required, use class MulticastSocket.

Relation to BSD sockets:
socket: Incorporated in class constructor.
bind, close, connect: Methods of class Socket.
listen, accept: Not relevant for clients.
read, write: Methods of the stream objects associated with
the socket.

Other important methods of the class include:
getInputStream: Returns an input (byte)stream for socket.
getOutputStream: Returns an output (byte)stream for socket.

Autumn 2008 Socket Programming ©Robin Sharp 5

Simple Java client
int

portno

= p;

String servname= s;
try
{ Socket serv

= new Socket(servname,portno);

System.out.println(“Connected

to server “+ ...);

InputStream

si

= serv.getInputStream();

OutputStream

so = serv.getOutputStream();

serv.close();
}
catch(UnknownHostException

e)

{System.out.println(“Cannot

find server “

+ servname); }
catch(IOException

e)

{System.out.println(“Error

in connecting to port “

+ Integer.toString(portno,10)
+ ” on ” + servname); }

… communicate with server via streams si and so.

Autumn 2008 Socket Programming ©Robin Sharp 6

Stream filters

InputStream and OutputStream are both
unbuffered byte streams -- not usually convenient for
use directly in applications.
More usual to apply one or more stream filters, e.g.:

Autumn 2008 Socket Programming ©Robin Sharp 7

Client with filtered streams

Socket

s1;

PrintStream

p1;

BufferedReader

d1;

String

recvreply;

try
{ s1=new Socket(servname,portno);
System.out.println(”Connected

to server ” + ...);

// Set up

input and output streams

d1=new BufferedReader(
new InputStreamReader(

new BufferedInputStream(
s1.getInputStream(),2500)));

p1=new PrintStream(
new BufferedOutputStream(

s1.getOutputStream(),2500),true);
recvreply

= d1.readLine();

System.out.println(”Server

Response: ” + recvreply);

p1.println(“HELO ” + cliname);
. . .

For input

For output

Autumn 2008 Socket Programming ©Robin Sharp 8

Java Server Sockets

Objects of the class java.net.ServerSocket

Assume underlying communication protocol is TCP.

Relation to BSD sockets:
socket: Incorporated in class constructor.
bind, close, accept: Methods of class ServerSocket.
Note that accept creates a Socket with associated input and
output streams when it accepts an incoming call.

connect: Not relevant for servers.

read, write: Methods of the stream objects associated with the
Socket created by accept.

Other important methods of the class include:
setSoTimeout: Set timeout for accept to get incoming call.

Autumn 2008 Socket Programming ©Robin Sharp 9

Simple Java server
int

portno

= p;

int

timeout = t;

try
{ ServerSocket

serv

= new ServerSocket(portno

);

serv.setSoTimeout(timeout);
Socket client

= serv.accept();

System.out.println("Connected

to client " + …);

InputStream

si

= client.getInputStream();

OutputStream

so = client.getOutputStream();

client.close();
}
catch (SocketTimeoutException

e)

{ System.out.println("Server

socket timeout on port "

+ Integer.toString(portno,10)); }
catch (IOException

e)

{ System.out.println("Cannot

set up server on port "

+ Integer.toString(portno,10)); }

… communicate with client via streams si and so

Autumn 2008 Socket Programming ©Robin Sharp 10

More useful server

Simple server deals with one call from one client.
For more useful setup, we may need to consider:

Repetitive execution to deal with consecutive calls?
Multiple threads to deal with simultaneous handling
of clients?

Create new thread to deal with each incoming call, kill
thread when connection is broken (by client? on inactivity?)
Release thread from pool of waiting threads on incoming
call, set to wait again when connection is broken.

Security issues?
Who is allowed to do what on which ports?

Autumn 2008 Socket Programming ©Robin Sharp 11

Java 2 security

Java 2 VM checks programs under execution against a list of
permissions

to access particular resources.

Permissions are typically specified in a policy file, and refer to a
class of permission objects

associated with the resource. For

example:
grant signedBy

“grass”{

permission java.net.SocketPermission

“*.dtu.dk:1099”,

“connect,accept” };

Causes permission object:

p1 = new SocketPermission(“*.dtu.dk:1099”,

“connect,accept”);

allowing connections to port 1099 on any host in domain dtu.dk
to be granted to code signed by “grass”.

Autumn 2008 Socket Programming ©Robin Sharp 12

Socket permissions

Specify:
one or more hosts
goofy.dtu.dk

*.dtu.dk

port number interval
7777 1024-49151 1024-

permitted methods
accept, connect, listen

(all these implicitly include resolve).
May be restricted to code originating from a
particular source (signedBy “xxx”).

Autumn 2008 Socket Programming ©Robin Sharp 13

Policy files

Global policy file: java.home/lib/security/java.policy
where java.home is directory containing jre.

Allows anyone to listen on non-privileged ports.
Allows any code to read standard (non-sensitive) properties,
such as os.home, file.separator,...

User policy file: user.home/java.policy
where user.home is user’s home directory.

Can be set by user.
Default value same as global policy file.

Runtime policy file: Specified by runtime parameter
-Djava.security.policy=filename

May also need -Djava.security.manager

to turn on the
default security manager!

Autumn 2008 Socket Programming ©Robin Sharp 14

More complex C/S Systems

Internet mail and browser applications are simple
examples. In more complex cases:

The client may need to search for a server which offers the
required functionality.
Need a lookup service in the network.
Client and server may need to exchange arbitrary data in a
more efficient way than by using messages in ASCII text.
Need an efficient platform-independent manner of
representing arbitrary data.
The client may need to authenticate itself to the server.
Need suitable authentication and key distribution
mechanisms.

Such common facilities are often introduced by using
a middleware layer between T- and A-layers….

Course 02152, DTU, Autumn 2008

Thank
you for

your
attention

8

	Slide Number 1
	Application Layer protocols
	Simple Socket Programming
	Java Client Sockets
	Simple Java client
	Stream filters
	Client with filtered streams
	Java Server Sockets
	Simple Java server
	More useful server
	Java 2 security
	Socket permissions
	Policy files
	More complex C/S Systems
	Slide Number 15

