E]lll

>E><
>

Socket Programming

Robin Sharp

Informatics and Mathematical Modelling

Technical University of Denmark
Phone: (+45) 4525 3749
e-mail: robin@imm.dtu.dk

Application Layer protocols

® Are based on a (more or less reliable) Transport

service — in the Internet, typically provided by TCP
or UDP.

® May support various ways of organising an
application. Common examples:
Q Peer-to-peer: Two or more participants with equal status.

O Client/server: Two participants. One party (server) offers
services to the other (client).

O Agent-based: Several parties collaborate in an “intelligent”

way.

Q Grid: (Very) large number of parties offer services, and
system will find the most appropriate one.

® \We focus here on Client/server systems.

Autumn 2008 Socket Programming ©Robin Sharp

=
=
=

I

=
=
=

Simple Socket Programming

I

® Internet Client/server applications are based on communication
between suitable ports in the client and server systems.

® Sockets offer a programming abstraction of endpoints of
communication channels, such as ports.

® Classic example: BSD TCP/IP Sockets, with operations:

Primitive Semantics C S
socket Create new communication endpoint + +
bind Associate local IP addr. + port with socket + +
listen Announce willingness to accept connections +
accept Block caller until conn. request arrives +
connect Initiate establishment of connection +

write/send Send data over connection + +
read/recv Receive data over connection + +
close Release connection + +

C.inclient S:in server
Autumn 2008 Socket Programming ©Robin Sharp 3

=
=
=

Java Client Sockets

I

® Objects of the class java.net.Socket

® Assume underlying communication protocol is TCP.
Q If UDPis required, use class DatagramSocket.
Q If multicast is required, use class MulticastSocket.

® Relation to BSD sockets:

O socket: Incorporated in class constructor.
Q bind, close, connect: Methods of class Socket.

Q listen, accept: Not relevant for clients.

O read, write: Methods of the stream objects associated with
the socket.

® Other important methods of the class include:
O getlnputStream: Returns an input (byte)stream for socket.
O getOutputStream: Returns an output (byte)stream for socket.

Autumn 2008 Socket Programming ©Robin Sharp 4

=
=
=

Simple Java client $3
int portno = p;

String servname= s;

try

{ Socket serv = new Socket (servname,portno) ;
System.out.println (“Connected to server “+ ...);
InputStream si = serv.getInputStream() ;
OutputStream so = serv.getOutputStream() ;

... communicate with server via streams si and so.

serv.close() ;

}

catch (UnknownHostException e)

{System.out.println(“Cannot find server ™
+ servname) ; }

catch (IOException e)

{System.out.println(“Error in connecting to port ™
+ Integer.toString(portno,10)
+ ” on ” + servname); }

Autumn 2008 Socket Programming ©Robin Sharp 5

=
=
=

Stream filters

I

® InputStream and OutputStream are both
unbuffered byte streams -- not usually convenient for
use directly in applications.

® More usual to apply one or more stream filters, e.g.:

DatalnputS tream
it booléan; ichar, g

BufferedInputStream
byte

DataOutputSiream
int, boolean, char,...

BufferedOutputStream
byte

OutputS tream

Buba InputStream

byte

Autumn 2008 Socket Programming ©Robin Sharp 6

Client with filtered streams

=
=
=

I

Socket sl;

PrintStream pl;
BufferedReader dl;

String recvreply;

try

{ sl=new Socket (servname,portno) ;

// Set up input and output streams
dl=new BufferedReader (
new InputStreamReader (
new BufferedInputStream
sl.getInputStream(), 2
pl=new PrintStream (
new BufferedOutputStream

recvreply = dl.readLine();

pl.println (“HELO ” + cliname);

sl.getOutputStr () ,2500),t

System.out.println (”Connected to server ” +

))

.
4

System.out.println (”Server Respo : ” + recvreply):

«e)i

For input

For output

°
I

Autumn 2008 Socket Programming ©Robin Sharp

Java Server Sockets

® Objects of the class java.net.ServerSocket

® Assume underlying communication protocol is TCP.

® Relation to BSD sockets:

O socket: Incorporated in class constructor.

Q bind, close, accept: Methods of class ServerSocket.
Note that accept creates a Socket with associated input and
output streams when it accepts an incoming call.

O connect: Not relevant for servers.

O read, write: Methods of the stream objects associated with the
Socket created by accept.

® Other important methods of the class include:
O setSoTimeout: Set timeout for accept to get incoming call.

Autumn 2008 Socket Programming ©Robin Sharp

=
=
=

I

=
=
=

I

Simple Java server
int portno = p;
int timeout = t;
try

{ ServerSocket serv = new ServerSocket(portno);
serv.setSoTimeout (timeout) ;
Socket client = serv.accept():;
System.out.println("Connected to client " + ..);
InputStream si = client.getInputStream();
OutputStream so = client.getOutputStream() ;

... communicate with client via streams si and so

client.close();
}
catch (SocketTimeoutException e)
{ System.out.println("Server socket timeout on port "
+ Integer.toString(portno,10)); }
catch (IOException e)
{ System.out.println("Cannot set up server on port "
+ Integer.toString(portno,10)); }

Autumn 2008 Socket Programming ©Robin Sharp

9

=
=
=

More useful server

I

Simple server deals with one call from one client.
For more useful setup, we may need to consider:
® Repetitive execution to deal with consecutive calls?

® |ultiple threads to deal with simultaneous handling
of clients?

Q Create new thread to deal with each incoming call, Kill
thread when connection is broken (by client? on inactivity?)

Q Release thread from pool of waiting threads on incoming
call, set to wait again when connection is broken.

® Security issues?
QO Who is allowed to do what on which ports?

Autumn 2008 Socket Programming ©Robin Sharp 10

=
=
=

Java 2 security

I

Java 2 VM checks programs under execution against a list of
permissions to access particular resources.

Permissions are typically specified in a policy file, and refer to a
class of permission objects associated with the resource. For

example:
grant signedBy “grass”{

permission java.net.SocketPermission “*.dtu.dk:1099”,

“connect,accept” };
Causes permission object:

pl = new SocketPermission(“*.dtu.dk:1099”,

“connect, accept”) ;

allowing connections to port 1099 on any host in domain dtu.dk
to be granted to code signed by “grass”.

Autumn 2008 Socket Programming ©Robin Sharp 11

Socket permissions

® Specify:

QO one or more hosts
goofy.dtu.dk *.dtu.dk

Q port number interval

71777

1024-49151 1024 -

Q permitted methods

accept,

connect, listen

(all these implicitly include resolve).

® May be restricted to code originating from a

particular source (signedBy “xxx”).

Autumn 2008

Socket Programming ©Robin Sharp

=
=
=

I

12

Policy files

=
=
=

I

® Global policy file: java.home/lib/security/java.policy
where java.nome is directory containing jre.
Q Allows anyone to listen on non-privileged ports.

Q Allows any code to read standard (non-sensitive) properties,
such as os.home, file.separator,...

® User policy file: user.home/java.policy

where user.home is user’'s home directory.
Q Can be set by user.

Q Default value same as global policy file.
® Runtime policy file: Specified by runtime parameter
-Djava.security.policy=filename

May also need -Djava.security.manager to turn on the
default security manager!

Autumn 2008

Socket Programming ©Robin Sharp 13

=
=
=

More complex C/S Systems

I

® Internet mail and browser applications are simple
examples. In more complex cases:

Q The client may need to search for a server which offers the
required functionality.

Need a lookup service in the network.

Q Client and server may need to exchange arbitrary data in a
more efficient way than by using messages in ASCII text.

Need an efficient platform-independent manner of
representing arbitrary data.

Q The client may need to authenticate itself to the server.

Need surtable authentication and key distribution
mechanismes.

® Such common facilities are often introduced by using
a middleware layer between T- and A-layers....

Autumn 2008 Socket Programming ©Robin Sharp 14

Typical Remote Site

]
Other Remote Sitesi.

/_H'\/_\
o
{ MCIVMET awitohed -—-mw-_\\

(DMIS P50 ssdteh FRI
in Haweaid, C&)

Y
=y Mote &
b -

New Santa Barbara
off campus site

C/’:% .
==

UCEE subnat fibar] _\L s
badkkena
e 0 B

T i
| WCE VHET amdtehed notwok DM
|l 260 awitih in Damdnguaz Hills, CA)Y

Typical Remote Site

p /
Mote A 2

el

Other Remote Sltf%

™1 Mote B

_r,—_v—\,\
{ Chmsa st
Lammurications
fibeer 0351 S
= Mtuiltiphs T-1
_r"‘__\ﬁ\ ,_.'f-_\“ 2
{UC Videa \f J Cattrans stabeseide
SR T sk
et Nt

Thank
you for
your
attention

Course 02152, DTU, Autumn 2008

	Slide Number 1
	Application Layer protocols
	Simple Socket Programming
	Java Client Sockets
	Simple Java client
	Stream filters
	Client with filtered streams
	Java Server Sockets
	Simple Java server
	More useful server
	Java 2 security
	Socket permissions
	Policy files
	More complex C/S Systems
	Slide Number 15

