
Robin Sharp
Informatics and Mathematical Modelling

Technical University of Denmark
Phone: (+45) 4525 3749

e-mail: robin@imm.dtu.dk

Middleware Programming

Autumn 2008 Middleware Programming ©Robin Sharp 2

More complex C/S Systems

Internet mail and browser applications are simple
examples. In more complex cases:

The client may need to search for a server which offers the
required functionality.
Need a lookup service in the network.
Client and server may need to exchange arbitrary data in a
more efficient way than by using messages in ASCII text.
Need an efficient platform-independent manner of
representing arbitrary data.
The client may need to authenticate itself to the server.
Need suitable authentication and key distribution
mechanisms.

Such common facilities are often introduced by using
a middleware layer between T- and A-layers.

Autumn 2008 Middleware Programming ©Robin Sharp 3

Middleware

Offers common facilities for supporting applications.
Allows the applications to be implemented in a manner
which is independent of the underlying platform.
Examples of types of middleware:

Remote Procedure Call (RPC). Replaces explicit exchange
of messages by procedure-call-like construction (e.g. SunRPC).
Remote Object Invocation (ROI). Activates methods on
objects located on remote systems, as in RMI, DCE.
Message-oriented Middleware (MOM). Exchange of
synchronous messages, as in MPI, MQSeries.
Stream-oriented Communication. Intended to support
exchange of continuous media (audio, video,…).

Autumn 2008 Middleware Programming ©Robin Sharp 4

RPC, ROI and CORBA

Autumn 2008 Middleware Programming ©Robin Sharp 5

A simple program interface for client/server
interaction.
Looks to the client application like a procedure call.

Stubs on client and server sides deal transparently
with exchange of messages when procedure is called.

Remote Procedure Call (RPC)

ServerClient
Client calls
procedure Send message

with call info.

Send message
with return info.Client

continues

Client
suspends
execution

Server
executes
procedure

Autumn 2008 Middleware Programming ©Robin Sharp 6

RPC stubs

Stubs offer both calling and called procedure the
same view of the interface as for a local procedure.
Stubs are compiled from description of the interface
in a suitable Interface Definition Language (IDL).
Description specifies types and directions of flow for
the parameters of the procedure.

Autumn 2008 Middleware Programming ©Robin Sharp 7

RPC stubs (2)

Compiled stub code in the client or server:
Marshals data for transfer to other party: Values are put
into a serial (linear) representation in a buffer.
Not all types of parameter can be used:
• The type must be serialisable.
• Pointer types may need special care (hand coding?)

Unmarshals data received from other party: Data structures
are built up again from linear transfer representation.
(Possibly) exchanges security info. authenticating client to
server and vice versa.

Usually one stub procedure for each procedure in the
interface. A despatcher on server side parses
incoming messages and passes them to appropriate
stub procedure.

Autumn 2008 Middleware Programming ©Robin Sharp 8

RPC Semantics

Not quite true that RPC offers same behaviour as a
local procedure call: Messages can get lost in transfer
or at either end.
RPC systems offer different guarantees for execution:

Exactly-once: As for local procedure call. Called
procedure is executed exactly once for each call.
Difficult to guarantee in a distributed system!
At-most-once: Called proc. executed once or not at all.
At-least-once: Called proc. executed one or more times.
Maybe: No guarantees.

Note that:
Maybe, At-least-once may give repeated execution.
Maybe, At-most-once may mean proc. is not executed.

Autumn 2008 Middleware Programming ©Robin Sharp 9

Binding

In an RPC/ROI system, server must be associated
with an identifier used for lookup by client.
Mapping (id→server) is stored in a registry.
Typical operations/methods needed:

bind: Register service interface and associate it with
network name or URI.
rebind: Associate new service with an already registered
name or URI.
unbind: Remove info. about a service interface with a given
name or URI.
lookup: Obtain reference to service interface with a given
name or URI. (Often includes client binding: import client
stub code, authenticate client and server to one another)

Autumn 2008 Middleware Programming ©Robin Sharp 10

Remote Object Invocation (ROI)

The OO analogue of RPC, but more tricky because of
need to pass references to remote objects.
On binding to a remote object, the client imports an
object proxy from the server.
Remote references specify server name and path to
the object (or to the proxy code).
Proxy offers same interface to client as the remote
object would, and contains code for marshalling,
checking security, etc.
As with RPC, not all object types can be marshalled;
they must be serialisable.

Autumn 2008 Middleware Programming ©Robin Sharp 11

ROI (2)

Typical ROI system architecture:

Autumn 2008 Middleware Programming ©Robin Sharp 12

Java RMI

Example of an ROI middleware system.
User program (as client) can invoke methods of a
remote object (as server).
Remote object implements a Java remote interface
(which extends the Remote interface).
Remote object is identified by a URL specifying server
host name and path to object code.
Bytecode for object proxy is imported to client when
client binding takes place.

Autumn 2008 Middleware Programming ©Robin Sharp 13

Example:

Java remote interface definition

public interface RemoteTarget

extends

Remote

{ public void

start(int

n)

throws

java.rmi.RemoteException;

public int

add(int

i)

throws

java.rmi.RemoteException;

public void

stop()

throws

java.rmi.RemoteException;

}

Must extend Remote interface.
All methods must be declared as raising
java.rmi.RemoteException.

Autumn 2008 Middleware Programming ©Robin Sharp 14

Java remote object

Must implement the given remote interface.
Must extend a suitable RemoteObject subclass.
Constructor must throw RemoteException.
public class

Target

extends

UnicastRemoteObject

implements

RemoteTarget

private int

bcount;

private boolean

active;

public Target()

throws

RemoteException

{ super(); }

public void start(int

n) ...

public int

add (int

i) ...

public void stop () ...

Implementations of methods
of the remote interface

Autumn 2008 Middleware Programming ©Robin Sharp 15

Java remote object (2)

Main method of remote object class must:
Create an object of the class.
Register object with RMI registry, so clients can find it.

public static

void

main(String

args[])

{ try
{ Target

t = new Target();

String

url

= "//localhost/Target";

Naming.rebind(url, t);
System.out.println("Bound

server at "

+ url

+ " to registry");

}
catch(Exception

e){ e.printStackTrace(); }

}

Autumn 2008 Middleware Programming ©Robin Sharp 16

Java client for remote object

Looks up object in registry to get reference to remote interface.
Calls remote methods using reference.
May need suitable security manager + permissions.
public static

void

main(String

args[])

{ String

server = sss;

try
{ if

(System.getSecurityManager() == null)

{ System.setSecurityManager(...);
};
String

url

= "//" + server + "/Target";

RemoteTarget

rTarget

=

(RemoteTarget) Naming.lookup(url

);

rTarget.start(20); ...
}
catch

(SecurityException

e) { ... }

catch

(Exception

e) { ... }

}

Autumn 2008 Middleware Programming ©Robin Sharp 17

An RMI application: Summary

Compile remote interface def.: javac RemoteTarget.java

Compile remote object impl.: javac Target.java

Compile client implementation: javac Blipper.java

Compile code for stubs: rmic Target

(If remote object is a package, use full qualified package name)
This produces Target_Stub.class

for client stub and

Target_Skel.class

for server stub, both on server system.

Start RMI registry: rmiregistry &

Start remote object: java Target &
May need to specify codebase and/or security policy file.

Start client(s): java Blipper &

If remote object is correctly registered and permissions given, client
will be able to activate methods of the remote object.

Java 1.4
or earlier

Autumn 2008 Middleware Programming ©Robin Sharp 18

CORBA

A software architecture and environment for developing
and implementing distributed applications.

Developed by Object Management Group (OMG).
CORBA= Common ORB

Architecture

ORB

= Object Request Broker: “software bus” which
can connect different types of software component,
possibly developed in different languages (C, Java,…)

ORB defined in terms of its interface -- many different
implementations, sometimes giving rise to differences
visible at application level.

We focus on Java ORB, using conventions to make
implementations portable to other ORBs.

Autumn 2008 Middleware Programming ©Robin Sharp 19

CORBA (2)

System architecture:

Familiar features: Client stub, server stub (skeleton).
New features:

Object adaptor
Interface and implementation repositories
Dynamic invocation interface.

Autumn 2008 Middleware Programming ©Robin Sharp 20

Common Object Services

A characteristic feature of CORBA, including:
Naming Service: for registration of bindings between
names and object references.
Event Service: allows components on the ORB to register
and de-register their interest in receiving particular
asynchronous events.
Security Service: provides security facilities, such as
authentication, non-repudiation and audit trails.
Concurrency Service: provides a lock manager.
Time Service: provides clock synchronisation over multiple
computers.

Autumn 2008 Middleware Programming ©Robin Sharp 21

CORBA IDL

Used to describe client/server interface, for example:

module

BlipTarget

{ interface Blip
{ void

start(in

long

n);

long

add

(in

long

i);

void

stop ();

oneway

void

shutdown();

};
};

“C++” types (IDL long <-> Java int, etc.)

Direction of information flow indicated by “in”, “out”, “in out”.

Compiled to desired target language by appropriate IDL compiler.

Autumn 2008 Middleware Programming ©Robin Sharp 22

A CORBA application: Summary

Compile remote interface def.: idlj Blip.idl

Compile server implem.: javac BlipTarget.java

Compile client implementation: javac BlipClient.java

Compile code derived from IDL: javac BlipApp/*.java

This produces class files for client & server stubs and helper classes.
Start ORB Name Service dæmon:

orbd

-ORBInitialPort

1050 &

Start server:
java

BlipTarget

-ORBInitialPort

1050

-ORBInitialHost

localhost

&

Start client(s):
java

BlipClient

-ORBInitialPort

1050

-ORBInitialHost

localhost

&

Don’t forget to stop ORB name server dæmon when finished!

Autumn 2008 Middleware Programming ©Robin Sharp 23

Web services and SOAP

Autumn 2008 Middleware Programming ©Robin Sharp 24

Another approach: SOAP

SOAP: Simple Object Access Protocol
Offers a way to pass arguments to an application and
return results from the application via an existing
Application Layer protocol (typically HTTP).
System structure (using HTTP):

Arguments and results are embedded in SOAP
messages encoded in XML.

Web Client Web Server Object

Arguments in
HTTP POST request

Results in
HTTP POST response

Autumn 2008 Middleware Programming ©Robin Sharp 25

SOAP messages in XML

SOAP messages are syntactically XML documents with a
hierarchical structure:
E.g. for method invocation:

Argument(s)

<?xml version="1.0"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENC:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<m:add

xmlns:m="http://www.soapware.org/">
<n xsi:type="xsd:int"> 3

</n>
</m:add>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope> Method

Envelope

Header Body

m:add

n

Autumn 2008 Middleware Programming ©Robin Sharp 26

SOAP messages in XML (2)

Results from invoked method are embedded in a similar
manner:

… at least if the invocation terminated correctly.

<?xml version="1.0"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENC:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<m:addResponse

xmlns:m="http://www.soapware.org/">
<addresult

xsi:type="xsd:int"> 27

</addresult>
</m:addResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Autumn 2008 Middleware Programming ©Robin Sharp 27

SOAP messages in XML (3)

If errors occur, a Fault Response message is returned:

<?xml version="1.0"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENC:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Client error.

Too many parameters in call of "add".
</faultstring>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Descriptive
string

Fault type

Autumn 2008 Middleware Programming ©Robin Sharp 28

SOAP Types
A subset of XML datatypes.
As in most programming languages, fall into:

Simple types: scalar values, no internal structure.
Compound types: structured values.

Some simple types in SOAP 1.1:
Set of values in type Type name Value Example

Decimal fractions xsd:decimal 12.345

Signed floating point numbers xsd:float -12.345E3

Signed double precision numbers xsd:double -12.34567890E3

Boolean values xsd:boolean true

Strings of characters xsd:string good morning

Date/times xsd:dateTime 2001-10-01T04:05:06

Base64 encoded binary SOAP-ENC:base64 GWalP2A=

32-bit signed integers xsd:int -1234567

16-bit signed integers xsd:short -1234

Negative integers xsd:negativeInteger -32768

Autumn 2008 Middleware Programming ©Robin Sharp 29

SOAP Types (2)

New types can be derived from already defined ones
by definition of subtypes:

Enumerations: Selected explicitly from a simple base type.
Subsets selected by restriction rules. E.g. int, short,
negativeInteger etc. are all subsets of decimal.

Compound SOAP types can be:
Structs: sets of named elements, of any types, whose
order is unimportant.
Arrays: ordered sequences of elements, of same or
different types. (Names, if any, are unimportant.)

Note: SOAP compound types and derived types are
(currently) only a subset of those available in XML.

Autumn 2008 Middleware Programming ©Robin Sharp 30

SOAP struct types

Members of struct types are sets of named elements, whose
order is not significant.
Example: A struct of type Bibentry.
<e:Bibentry>

<author>Alfons

Aaberg</author>

<title>My life as a latchkey child</title>

<pubyear>2015</pubyear>

</e:Bibentry>

Three elements: two strings and an integer.
Reference to elements by name (author, title,…).

Type definition given in schema, e.g.:
<element name="Bibentry">

<complexType>

<element name="author"

type="xsd:string"/>

<element name="title"

type="xsd:string"/>

<element name="pubyear"

type="xsd:int"/>

</complexType>

</element>

Autumn 2008 Middleware Programming ©Robin Sharp 31

SOAP array types

Members of array types are ordered sequences of elements, of
same or different types. Element names are not significant.
Example: An array of type int[5] (5 int elements)
<Primes SOAP-ENC:arrayType="xsd:int[5]">

<item xsi:type="xsd:int">2</item>

<item xsi:type="xsd:int">3</item>

<item xsi:type="xsd:int">5</item>

<item xsi:type="xsd:int">7</item>

<item xsi:type="xsd:int">11</item>

</Primes>

Or, alternatively, with implicit element types:
<Primes SOAP-ENC:arrayType="xsd:int[5]">

<number>2</number>

<number>3</number>

<number>5</number>

<number>7</number>

<number>11</number>

</Primes>

Element type given
by array type

Autumn 2008 Middleware Programming ©Robin Sharp 32

Web Services with SOAP

Simple idea: Implement programs which send and
receive HTTP POST requests/responses containing
SOAP messages.
More advanced environments hide details (like RMI
and CORBA).
Examples:

Apache SOAP (Java-based)
SOAP::lite (Perl-based)
.NET (C#-based, but other languages also OK?)

Autumn 2008 Middleware Programming ©Robin Sharp 33

Apache SOAP

A toolkit for producing Web services:

Offers a Java environment for:
Defining interface to service (à la RMI).
Producing implementation on server.
Producing implementation of client.

Offers facilities for deploying service:
Defining service offered to users.
Registering in registry.
Browsing in registry.

Autumn 2008 Middleware Programming ©Robin Sharp 34

Apache SOAP server definitions

Interface definition:

Server-side implementation:

public interface IBlip
{ public void start(int

n);
public int

add(int

i);
public void stop();

}

public class WSBlip

implements IBlip
{ private int

bcount;
private boolean

active;

public void start(int

n)
{ System.out.println(new

Date() + ": Target activated.");
bcount

= n;
active = true; }

public int

add(int

i) { ... }

public void stop() { ... }

Compile as usual
using javac.

Autumn 2008 Middleware Programming ©Robin Sharp 35

Apache SOAP Client code

Not quite as easy as Server-side code!
Uses modified versions of methods, referring to
remote service by URL.
Each method needs to:

Set up Call object describing call of remote method.
Create vector with parameters and insert into Call object.
Invoke remote service.
Deal with (correct or faulty) SOAP response.

Apache SOAP environment offers classes whose
methods make this (relatively) easy.

Autumn 2008 Middleware Programming ©Robin Sharp 36

Example: add

method in client
public static

int

add(URL

url, int

n)

throws

Exception
{ // Create

Call

object

and set SOAP encoding

spec.
Call

call

= new Call();
call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC

);
// Set parameters for service locator
call.setTargetObjectURI("urn:xmethods-Blipper");
call.setMethodName("add");
// Create

vector

with

parameter(s) and insert

into

Call

object
Parameter param1 = new Parameter("n", int.class, n, null);
Vector

params

= new Vector();
params.addElement(param1); call.setParams(params

);

// Invoke

remote

service and deal with

response
Response

resp

= call.invoke(url, "/Blipper");
if(resp.generatedFault())
{ Fault

f = resp.getFault();
System.err.println("Fault= "+f.getFaultCode()+", "+f.getFaultString());
throw

new Exception();
} else
{ // The

call

was

successful. Retrieve

return

value.
Parameter result

= resp.getReturnValue();
Int

addobj

= (Int) result.getValue();
return

addobj.intValue();
}

}

Autumn 2008 Middleware Programming ©Robin Sharp 37

Apache SOAP Web Service deployment

Offers facilities to inform Web server about:
Identity of Web service being offered, as URN.
Scope: Activation mode of service.

E.g. Request: New instance of service for each new request.

Methods made available.
Provider type: Java class, Bean script, EJB,…
Provider Class: Name of the Java class offered.
Static?: True if methods are static on Java class.

… or whatever is appropriate for the implementation type.
Offers facilities for browsing deployed services.
Offers facilities for undeploying services which are no longer
needed.

Autumn 2008 Middleware Programming ©Robin Sharp 38

Deployment Descriptors

XML documents which describe the deployed service.
E.g. for Apache SOAP:

<isd:service

xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:demo:wsblip"
type="message"
checkMustUnderstands="false">

 <isd:provider

type="java"
scope="Request"
methods="start add stop">

 <isd:java

class="WSBlip" static="true"/>

 </isd:provider>

 <isd:faultListener>
org.apache.soap.server.DOMFaultListener

</isd:faultListener>
</isd:service>

Autumn 2008 Middleware Programming ©Robin Sharp 39

SOAP in context…

SOAP is really just one protocol layer in the multi-
layer Web Services Architecture:

Service Flow WSFL, BPEL, …

Service Publication and
Discovery UDDI, WSEL

Service description WSDL

XML-based messaging SOAP

Networking HTTP, FTP, SMTP, …

Course 02152, DTU, Autumn 2008

Thank
you for

your
attention

8

	Slide Number 1
	More complex C/S Systems
	Middleware
	RPC, ROI and CORBA
	Remote Procedure Call (RPC)
	RPC stubs
	RPC stubs (2)
	RPC Semantics
	Binding
	Remote Object Invocation (ROI)
	ROI (2)
	Java RMI
	Java remote interface definition
	Java remote object
	Java remote object (2)
	Java client for remote object
	An RMI application: Summary
	CORBA
	CORBA (2)
	Common Object Services
	CORBA IDL
	A CORBA application: Summary
	Web services and SOAP
	Another approach: SOAP
	SOAP messages in XML
	SOAP messages in XML (2)
	SOAP messages in XML (3)
	SOAP Types
	SOAP Types (2)
	SOAP struct types
	SOAP array types
	Web Services with SOAP
	Apache SOAP
	Apache SOAP server definitions
	Apache SOAP Client code
	Example: add method in client
	Apache SOAP Web Service deployment
	Deployment Descriptors
	SOAP in context…
	Slide Number 40

