
Robin Sharp
Informatics and Mathematical Modelling

Technical University of Denmark
Phone: (+45) 4525 3749

e-mail: robin@imm.dtu.dk

Beyond the Client-Server
Approach

Autumn 2008 Distributed Systems ©Robin Sharp 2

Distributed systems

Definition: Systems, composed of a number of
computers, which are connected by means of a
communication network.

Def. covers a large number of possible practical
organisations, including:

Small systems, e.g. on a single chip
Local systems, e.g. within a building or a department of a
company.
Large systems, with many computers spread over a large
geographical area.

In distributed systems computations typically take place
via collaboration between the computers.

Autumn 2008 Distributed Systems ©Robin Sharp 3

Distributed applications

Are based on communication via a (more or less
reliable) Transport service — in the Internet, typically
provided by TCP or UDP.
Communication may support various ways of
organising an application. Common examples:

Client/server: Two participants. One party (server) offers
services to the other (client).
Peer-to-peer: Two or more participants with equal status.
Agent-based: Several parties collaborate in an “intelligent”
way.
Grid: (Very) large number of parties offer services, and
system will find the most appropriate one.

Autumn 2008 Distributed Systems ©Robin Sharp 4

Server
Client

Server

More Complex C/S Systems

In many applications, a simple “one server per client”
architecture is not enough:

A client may need to get in touch with several servers.
A server may itself be a client of one or more other servers.

Client

Server

Server Server
“Multi-tier Architecture”

Autumn 2008 Distributed Systems ©Robin Sharp 5

Multi-tier Architecture

Typical 3-tier example from a business application:

Client looks after presentation and user input.
Application server looks after specific “business logic”
Database server looks after general data storage.

Client

Application
server

Database
server

Presentation (GUI)

Business logic

Data storage

Autumn 2008 Distributed Systems ©Robin Sharp 6

Agent-based systems

Instead of a Client/server design, many interesting
systems offer a service based on (possibly intelligent)
collaboration between a set of agents.
Example: An agent-based Message Handling System.

UA: User Agents,
which handle
interaction with users.

MTA: Message
Transfer Agents,
which pass messages.

Autumn 2008 Distributed Systems ©Robin Sharp 7

Agent technologies

Agents may be:
Static: An agent stays on a given system.
Mobile: Agents move between systems collecting information.

Security is a big issue, especially for mobile agents.
An agent should only have access to resources which it has
permission to use!

Autumn 2008 Distributed Systems ©Robin Sharp 8

in(?x,”pm”)<3.00,”pm”>

in(?t,”am”)

Agent technologies (2)

Agents may be designed on various abstraction levels:
Coordination infrastructure: System designer describes
what the agents say to one another.
Examples: JavaSpaces, Aglets, Jade, KQML.
Coordination framework: Uses a more abstract model of the
system, such as Shared Tuplespace, to describe the actions
of agents without saying explicitly how they communicate.
Examples: Linda, TuCSoN.

out(9.20,”am”)

out(6.30,”pm”) <6.30,”pm”>

<9.20,”am”>

<11.00,”am”>
<9.20,”am”>

<3.00,”pm”>

Autumn 2008 Distributed Systems ©Robin Sharp 9

Peer-to-peer (P2P) technology

All participants have equal status and can
communicate with each other without even knowing
where their partners are.
Examples: FreeNet, Gnutella, Chord.

The practical implementation may involve one or
more servers, which route communication and (in
most cases) hide the clients from one another.

Autumn 2008 Distributed Systems ©Robin Sharp 10

Grid Technology

Recent proposals for very large distributed systems have
focussed on distributing huge computations:

Molecular dynamics
High energy physics
Climate modelling
Economic modelling
Real-time global 3-dimensional illumination
Extraction of information on Global Biodiversity
Engineering simulations

Some such computations take several thousand CPU years or
need storage for peta(1015)bytes of data.
As with agents, the challenge is to distribute the activity for
execution on a large number of systems, with adequate
provision for security.

Autumn 2008 Distributed Systems ©Robin Sharp 11

A simple idea: Aggregation

Exploit unused CPU time on millions of PCs to solve
huge task sets.

Applications typically run as a client on each PC, which
requests a new task from a server when it has spare
CPU time available, e.g. as part of a screen saver.
SETI: Extra-terrestrial intelligence?

Analysis of billions of radio signal sequences.
LifeSaver: Cancer-active drugs?

Analysis of billions of potential active molecules.
Quadratic/Number Field sieve: Factors?

Analysis of billions of potential prime factors.

Autumn 2008 Distributed Systems ©Robin Sharp 12

Projects such as these offer
simple solutions which help

mankind!

Autumn 2008 Distributed Systems ©Robin Sharp 13

…probably

We’ll fiddle the output so there’s nothing
unusual and these Earthlings will never find us!

Autumn 2008 Distributed Systems ©Robin Sharp 14

Simple solutions

Simple solutions such as “screen-saver algorithms” work
well when:
Simple division into identical sub-tasks
Simple dependency graph

Master

(server)

Slaves

(clients)

No special scheduling order (or deadlines).
No communication between sub-tasks.
Security same as for ordinary PC applications.

Autumn 2008 Distributed Systems ©Robin Sharp 15

More difficult cases

Architecture must allow us to access resources
from a huge collection of heterogeneous
computers in a uniform manner.
This is the idea behind Grid computing:

Computational grids, which give access to storage
and computational resources.
Access grids, which give access to information and
presentation facilities, e.g. Teleconferences.

Analogous to the power grid for supplying
electricity!

Autumn 2008 Distributed Systems ©Robin Sharp 16

The Grid

In the Power Grid, users do not worry about where
the electric power comes from – it just comes out of
the electric plug!

In a Computational Grid, users do not worry about
where the computational power comes from!

Autumn 2008 Distributed Systems ©Robin Sharp 17

Major challenges…

In a Grid

with heterogeneous computers, covering a large physical
area, there are challenges in (amongst other things):
Resource allocation:

How do we find the necessary resources?
Scheduling:

In which order should the tasks be executed?
Load balancing:

How do we ensure that the computers have “equal” loads?
Communication:

How do we ensure that we use routes with lowest latency?
Caching:

Must extra copies of data be stored nearby? How many?
Security:

How do we secure the Grid system against hackers and
other misuse?

Autumn 2008 Distributed Systems ©Robin Sharp 18

Further information...

If you find these topics interesting, then consider
following the courses:

02222: Distributed Systems

(10 points, Spring)
Paradigms, Protocols, Algorithms in systems of
interconnected computers.

02345: Computer Security

(10 points, Autumn)
Applied cryptography, System design, Analysis of
computer systems to ensure secure operation.

Course 02152, DTU, Autumn 2008

Thank
you for

your
attention

8

	Slide Number 1
	Distributed systems
	Distributed applications
	More Complex C/S Systems
	Multi-tier Architecture
	Agent-based systems
	Agent technologies
	Agent technologies (2)
	Peer-to-peer (P2P) technology
	Grid Technology
	A simple idea: Aggregation
	Slide Number 12
	…probably
	Simple solutions
	More difficult cases
	The Grid
	Major challenges…
	Further information...
	Slide Number 19

