Verification
e Given a program P and a property ¢, show
Pl=g
Sequential Programs
e Execution model: [— O

e Hoare logic for input/output correctness:

{P} S {Q}
Reactive Programs
o Execution model: sy~ s L5 55 25 ..

e Temporal logic [Pnueli 77], e.g. O(FP = <Q)

e Program given by model:

Mp = ¢

Verification Approaches

Paper-and-Pencil Proofs
e OK, for small problems (papers)
e Tedious and error-prone for real systems
Proof Assistants
e Tools for conducting and checking manual proofs
e May have semi-automatic sub-tools (e.g. decision procedures)
e Hard to learn
Model Checkers
e Automatic proof tools for finite state systems
e Less hard to learn

e Suffers from state explosion

Model Checking

Property
(Abstract Model
OE ?:/‘O } Model Checker HOYES
L O " IVe)

(Real system

Env. Computer

SPIN
Model checker developed at Bell-Labs
Characteristics

e Based on PAN — Protocol Analyzer (1980)

e First version of SPIN in 1989

e Components:
— A textual modelling langauge (Promela)
— A property lanaguage based on Temporal Logic
— A verification engine (pan)
— A simulator

— A simple graphical user interface (xspin)
e Open source — implemented in C

® WWw.spinroot.com

Promela

e A textual language based on Dijkstra's Guarded Commands

if :: (x <= y) -> skip
x> y) >t=x;x=y; 7=t
fi

Allows for both shared variables and communication over channels

Only integer types (of different sizes) and arrays

Arbitrary big atomic statements

Macros, but no proper procedures

Allows for nondeterminism

Processes can be spawned dynamically

Promela: Peterson’s Algorithm

bool inl, in2 = 0;

byte turn = 1;

proctype P1()
{

do ::
inl = 1;
turn = 2;
(in2 == 0 || turn == 1);
/* critical section */
inl = 0;
/* non-critical section */
if :: skip :: break fi
od

init { run P1(); run P2Q); }

proctype P2()
{

do ::
in2 = 1;
turn = 1;
(inl == 0 || turn == 2);
/* critical section */
in2 = 0;
/* non-critical section */
if :: skip :: break fi
od

Safety of Peterson’s Algorithm

bool inl, in2 = 0;
byte turn = 1;
byte incrit = 0O;

active proctype P1()
{
do ::
inl = 1;
turn = 2;

(in2 == 0 || turn == 1);

/* critical section */
incrit++;
assert(incrit == 1);
incrit--;

inl = 0;
/* non-critical section */

if :: skip :: break fi
od

active proctype P2()
{
do ::
in2 = 1;
turn = 1;

(inl == 0 || turn == 2);

/* critical section */
incrit++;
assert(incrit == 1);
incrit--;

in2 = 0;
/* non-critical section */

if :: skip :: break fi
od

SPIN Property Language

Safety
e Assertions
e Test-processes
e Global invariants

Liveness

e Expressed in Linear Temporal Logic

e Translated into Blichi Automata

e Progress of processes can be assumed (weak fairness)

SPIN Verification Engine

Generates a specialized C-program (pan.c) that:
e Constructs an state-machine for each process

e Generates the set of reachable states

Checks properties on-the-fly

Can handle varying length state vectors

Checks liveness by non-recurrence of states

Only relevant checks are compiled

Model Checking Tools Observations

e Model checking can handle non-trivial systems

Model checking cannot handle large systems

Required verification engineering skills:
— Good understanding of abstraction principles
— Good understanding of property langauge

— Some insight into verification principles necessary

Tools still “academic”

Weak link: Real code < model

Bandera
Verification tool being developed at Kansas State University

Characteristics
e Model checking environment (for Java programs)
e Front end to off-the-shelf model checkers (primarily SPIN)

Given a property and a Java program, Bandera:

— Constructs an abstract model of the program
— Passes the model and the property to the model checker

— Translates verifier output back to Java program notions

Has developed an ‘“intuitive” property language

Open source — implemented in Java

e www.cis.ksu.edu/santos/bandera/

Zing
Next generation verification tool developed at Microsoft Research

Characteristics

e Textual modelling language based on atomic actions
e Includes objects and procedures/methods
e Allows for oth shared state and channel communication
e Model checker that deals with rich dynamic state:
— Global variables/objects
— Thread stacks
— Heap
e Front end that generates models from concrete C/C# programs
e Alpha version freely available — but not open source
e Runs on .NET platform — integrated with Visual Studio

e research.microsoft.com/zing

