
Verification

• Given a program P and a property φ, show

P |= φ

Sequential Programs

• Execution model: I → O

• Hoare logic for input/output correctness:

{P} S {Q}

Reactive Programs

• Execution model: s0
a0−→ s1

a1−→ s2
a2−→ . . .

• Temporal logic [Pnueli 77], e.g. 2(P ⇒ 3Q)

• Program given by model:

MP |= φ

Verification Approaches

Paper-and-Pencil Proofs

• OK, for small problems (papers)

• Tedious and error-prone for real systems

Proof Assistants

• Tools for conducting and checking manual proofs

• May have semi-automatic sub-tools (e.g. decision procedures)

• Hard to learn

Model Checkers

• Automatic proof tools for finite state systems

• Less hard to learn

• Suffers from state explosion

Model Checking

Abstract Model

Real system

Env. Computer

Model Checker

Property

YES

NO

SPIN

Model checker developed at Bell-Labs

Characteristics

• Based on PAN — Protocol Analyzer (1980)

• First version of SPIN in 1989

• Components:

– A textual modelling langauge (Promela)

– A property lanaguage based on Temporal Logic

– A verification engine (pan)

– A simulator

– A simple graphical user interface (xspin)

• Open source — implemented in C

• www.spinroot.com

Promela

• A textual language based on Dijkstra’s Guarded Commands

if :: (x <= y) -> skip

:: (x > y) -> t = x; x = y; y = t

fi

• Allows for both shared variables and communication over channels

• Only integer types (of different sizes) and arrays

• Arbitrary big atomic statements

• Macros, but no proper procedures

• Allows for nondeterminism

• Processes can be spawned dynamically

Promela: Peterson’s Algorithm

bool in1, in2 = 0;
byte turn = 1;

proctype P1()
{
do ::

in1 = 1;
turn = 2;

(in2 == 0 || turn == 1);

/* critical section */

in1 = 0;

/* non-critical section */
if :: skip :: break fi

od
}

proctype P2()
{
do ::

in2 = 1;
turn = 1;

(in1 == 0 || turn == 2);

/* critical section */

in2 = 0;

/* non-critical section */
if :: skip :: break fi

od
}

init { run P1(); run P2(); }

Safety of Peterson’s Algorithm

bool in1, in2 = 0;
byte turn = 1;
byte incrit = 0;

active proctype P1()
{
do ::

in1 = 1;
turn = 2;

(in2 == 0 || turn == 1);

/* critical section */
incrit++;
assert(incrit == 1);
incrit--;

in1 = 0;

/* non-critical section */
if :: skip :: break fi

od
}

active proctype P2()
{
do ::

in2 = 1;
turn = 1;

(in1 == 0 || turn == 2);

/* critical section */
incrit++;
assert(incrit == 1);
incrit--;

in2 = 0;

/* non-critical section */
if :: skip :: break fi

od
}

SPIN Property Language

Safety

• Assertions

• Test-processes

• Global invariants

Liveness

• Expressed in Linear Temporal Logic

• Translated into Büchi Automata

• Progress of processes can be assumed (weak fairness)

SPIN Verification Engine

Generates a specialized C-program (pan.c) that:

• Constructs an state-machine for each process

• Generates the set of reachable states

R
I

• Checks properties on-the-fly

• Can handle varying length state vectors

• Checks liveness by non-recurrence of states

• Only relevant checks are compiled

Model Checking Tools Observations

• Model checking can handle non-trivial systems

• Model checking cannot handle large systems

• Required verification engineering skills:

– Good understanding of abstraction principles

– Good understanding of property langauge

– Some insight into verification principles necessary

• Tools still “academic”

• Weak link: Real code ↔ model

Bandera

Verification tool being developed at Kansas State University

Characteristics

• Model checking environment (for Java programs)

• Front end to off-the-shelf model checkers (primarily SPIN)

• Given a property and a Java program, Bandera:

– Constructs an abstract model of the program

– Passes the model and the property to the model checker

– Translates verifier output back to Java program notions

• Has developed an “intuitive” property language

• Open source — implemented in Java

• www.cis.ksu.edu/santos/bandera/

Zing

Next generation verification tool developed at Microsoft Research

Characteristics

• Textual modelling language based on atomic actions

• Includes objects and procedures/methods

• Allows for oth shared state and channel communication

• Model checker that deals with rich dynamic state:

– Global variables/objects

– Thread stacks

– Heap

• Front end that generates models from concrete C/C# programs

• Alpha version freely available — but not open source

• Runs on .NET platform — integrated with Visual Studio

• research.microsoft.com/zing

