Transactions
e Transaction = atomic action spanning several concurrent objects
e Classic example: Transfer between bank accounts
e Transactions may be interactive
e Transaction may fail or be given up (abort).
e Often associated with persistent data objects (data bases)
Transaction Properties
Atomicity. All-or-nothing property.
Consistency. Should preserve system invariants.
Isolation. No interference (= atomicity).

Durability. Effect should remain.

Serializability

e A set of concurrently executed transactions are serializable if the
operations on the underlying objects can be reordered such that:

1. The sequence of operations for each transaction is preserverd
2. The transactions follow each other in some sequence

3. The effect on the object states remains the same
Conflics
e Two operations are in conflict if they cannot always be swapped
e Operations on different objects do not conflict

e Single object conflicts may be characterized semantically, eg.

Read | Write | Incr
Read X X
Write | x X X
Incr X X

Transaction Management

° tid = StartTransaction()
obj.op(...)ua
res = EndTransaction(tid) res : Commit, Abort

e If transaction may abort, operations must be undone
Pessimistic Solutions

e Global lock at transaction level

e Locking of individual objects, conflict locking, successive locking

e 2-phase locking: Lock until commit/abort decided, then unlock.
Optimistic Solutions

e Idea: Go ahead and validate transaction before commitment

e Many different techniques.

MySQL Transactions
Storage Engine MyISAM

e Efficient, but only supports explicit locking at table level

e Example: LOCK TABLE A READ, B WRITE, C WRITE
Use of tables A, B, and C
UNLOCK TABLES

Storage Engine InnoDB

e Supports transactions by row-level locking

e Example: START TRANSACTION
SELECT ... FROM ... WHERE ...
UPDATE ... SET ...
COMMIT

e Optionally weaker isolation levels may be used

Distributed Transaction Management
e Objects handled by several distributed servers

e Roles:
— Client: Defines transaction extent and contents
— Coordinator: Controls the outcome of transaction

— Participants: Distributed objects being operated upon

Client creates transaction and issues operations to participants

Overall decision whether to commit or abort must be made

Standard approach: Two-phase commit

Two-phase Commit Protocol
e Solution to distributed commit/abort decision [Gray 78].

° The client requests the coordinator to start a new transaction
Operations are executed in within a transaction context
Participants register with the coordinator

The client requests the coordinator to end the transaction
The coordinator asks participants to prepare for commitment
The participants respond with commit/abort votes

The coordinator informs all about commit/about decision

® N o 0~ N

Partipants store changes persistently or discards them

Issues of Two-phase Commit Protocol
Robustness

e Decision protocol should tolerate common failures
(network errors and node chrashes)

e Example: Use of persistent logs to record intermediate changes

e Consensus problem unsolvable for arbitrary failures [Fischer 85]
Global Deadlocks

e Participant may use locking for internal atomicity

e Each participant can detect only local deadlocks

e Solutions: — Use timeouts to abort blocked transi-
tions
— Apply distritubed deadlock detection

Two-phase Commit Protocol
Java
e Java Transaction API (JTA) and Java Transaction Service (JTS)
e Use mostly implicit within J2EE application server
CORBA
e CORBA Transaction Service
Web Services
e WS Coordination framework for general coordination
e WS Atomic Transaction for ACID-transactions
e WS Business Activity for “open’” transactions

e Open transactions may use compensation to undo changes

