
Transations
• Transation = atomi ation spanning several onurrent objets
• Classi example: Transfer between bank aounts
• Transations may be interative
• Transation may fail or be given up (abort).
• Often assoiated with persistent data objets (data bases)Transation PropertiesAtomiity. All-or-nothing property.Consisteny. Should preserve system invariants.Isolation. No interferene (= atomiity).Durability. E�et should remain.

Serializability
• A set of onurrently exeuted transations are serializable if theoperations on the underlying objets an be reordered suh that:1. The sequene of operations for eah transation is preserverd2. The transations follow eah other in some sequene3. The e�et on the objet states remains the sameCon�is
• Two operations are in on�it if they annot always be swapped
• Operations on di�erent objets do not on�it
• Single objet on�its may be haraterized semantially, eg.

Read Write Incr

Read × ×

Write × × ×

Incr × ×

Transation Management
• tid = StartTransaction()...

obj .op(. . .)tid...
res = EndTransaction(tid) res : Commit, Abort

• If transation may abort, operations must be undonePessimisti Solutions
• Global lok at transation level
• Loking of individual objets, on�it loking, suessive loking
• 2-phase loking: Lok until ommit/abort deided, then unlok.Optimisti Solutions
• Idea: Go ahead and validate transation before ommitment
• Many di�erent tehniques.

MySQL TransationsStorage Engine MyISAM
• E�ient, but only supports expliit loking at table level
• Example: LOCK TABLE A READ, B WRITE, C WRITEUse of tables A, B, and CUNLOCK TABLES

Storage Engine InnoDB
• Supports transations by row-level loking
• Example: START TRANSACTIONSELECT . . . FROM . . . WHEREUPDATE . . . SET . . .COMMIT
• Optionally weaker isolation levels may be used

Distributed Transation Management
• Objets handled by several distributed servers
• Roles:� Client: De�nes transation extent and ontents� Coordinator: Controls the outome of transation� Partiipants: Distributed objets being operated upon
• Client reates transation and issues operations to partiipants
• Overall deision whether to ommit or abort must be made
• Standard approah: Two-phase ommit

Two-phase Commit Protool
• Solution to distributed ommit/abort deision [Gray 78℄.
• 1. The lient requests the oordinator to start a new transation2. Operations are exeuted in within a transation ontext3. Partiipants register with the oordinator4. The lient requests the oordinator to end the transation5. The oordinator asks partiipants to prepare for ommitment6. The partiipants respond with ommit/abort votes7. The oordinator informs all about ommit/about deision8. Partipants store hanges persistently or disards them

Issues of Two-phase Commit ProtoolRobustness
• Deision protool should tolerate ommon failures(network errors and node hrashes)
• Example: Use of persistent logs to reord intermediate hanges
• Consensus problem unsolvable for arbitrary failures [Fisher 85℄Global Deadloks
• Partiipant may use loking for internal atomiity
• Eah partiipant an detet only loal deadloks
• Solutions: � Use timeouts to abort bloked transi-tions� Apply distritubed deadlok detetion

Two-phase Commit ProtoolJava
• Java Transation API (JTA) and Java Transation Servie (JTS)
• Use mostly impliit within J2EE appliation serverCORBA
• CORBA Transation ServieWeb Servies
• WS Coordination framework for general oordination
• WS Atomi Transation for ACID-transations
• WS Business Ativity for �open� transations
• Open transations may use ompensation to undo hanges

