
02152 Concurrent Systems Fall 2008 CP Solutions Page 41

Solutions for CP Exercises, October 6

1. Solution for Silberschatz, Exercise 6.8

Two of the processes may always get their resources at the same time, but not all three
of them. One could imagine a deadlock situation in which each process has one instance
and waits for another one. But since the three waiting processes only hold three instances,
there will be one instance left and thus one of the processes can get its last resource and
terminate. Thus, the system cannot enter a deadlock situation.

2. Solution for Silberschatz, Exercise 6.9

Generalizing the argument of exercise 6.8 we get:

For a sytem with m inscances of a resource type, a deadlock situation is characterized by
a number of processes that are requesting more instances while holding some already, but
no more instances are available.

A process Pi can request more instances only if it has not yet reached is maximal claim
MAXi . The maximal number of instances n processes may have reserved without having
reached their maximum claim (and thereby be able to finish) is given by:

n∑

i=1

(MAXi − 1) = (
n∑

i=1

MAXi) − n = MAX − n

Thus, no deadlock can occur if this number is less than the number of available instances
m:

MAX − n < m

or
MAX < n + m

It is assumed that all processes need several instances, ie. MAXi > 1 for all i and, of
course, that MAXi ≤ m.

3. Solution for Silberschatz, Exercise 6.15

(a) For each process i , Needi = Maxi − Allocationi , ie.

Need
A B C D

P0 0 0 0 0
P1 0 7 5 0
P2 1 0 0 2
P3 0 0 2 0
P4 0 6 4 2



02152 Concurrent Systems Fall 2008 CP Solutions Page 42

(b) The exucution of the safe algoritm may be written as follows:

Free (Work) Can be finished
A B C D

1 5 2 0 P0

1 5 3 2 P2

2 8 8 6 P1

3 8 8 6 P3

3 14 11 8 P4

3 14 12 12

In each step, a process to be finished is found by comparing Free with Need . Since the
algoritm terminates with all processes finished, the situation is safe.

(c) First, the sitiation is changed as if the request had been granted:

Allocation1 = (1, 4, 2, 0)

Need1 = (0, 3, 3, 0)

Free = (1, 1, 0, 0)

Then the safe algoritm is performed again:

Free (Work) Can be finished
A B C D

1 1 0 0 P0

1 1 1 2 P2

2 4 6 6 P1

3 8 8 6 P3

3 14 11 8 P4

3 14 12 12

Since the request (0, 4, 2, 0) from P1 would result in a situation that is still safe, the request
can be granted.


