Solutions for CP Exercises, December 4

1. Solution for CP Exam December 1998, Problem 1

Question 1.1

- (a) At entry in cs_1 , $C_1 = 1$ due to the loop condition. In cs_1 , C_1 is not changed by P_1 . Further, the only assignment to C_1 in P_2 is f_2 which cannot change $C_1 = 1$. Thus, $C_1 = 1$ in cs_1 .
- (b) Omitted.
- (c) $I \stackrel{\Delta}{=} C_1 = C_2 \Rightarrow C_1 = 0 \land C_2 = 0$

I holds initially since $C_1 = 0 \land C_2 = 0$.

The potentially dangerous actions are changes of C_1 and C_2 . For P_1 these are:

- a_1 : After the execution, C_1 and C_2 are different (cf. (b)). Thus I holds.
- d_1 : If $C_2 \neq 0$ before the execution, C_1 and C_2 are different afterwards. If $C_2 = 0$ before, both are 0 afterwards. In both cases, I holds.
- f_1 : Before the execution, $C_1 = 0$ cf. H_1 . Since C_1 is not changed by this action, C_1 and C_2 differ after the execution, hence I holds.

By symmetry, we see that I is also preserved by all actions in P_2 . Together with I holding initially, we conclude that I is an invariant for the program.

(d) Assume that mutual exclusion was violated: in $ks_1 \wedge in ks_2$

According to (a), we should then have $C_1 = 1 \wedge C_2 = 1$ contradicting *I*. Thus, mutual exlusion is ensured for this program.

Question 1.2 (Not required)

It is assumed that P_1 stays in w_1 for ever:

- 1. If P_1 stays in w_1 for ever, it follows from H_1 that $C_1 > 0$ must hold forever. Thus, we can assume $\Box in w_1$ og $\Box C_1 > 0$ in the following.
- 2. Due to fair process execution, P_2 will eventually reach e_2 unless it gets stuck somewhere else. Since we assume that it cannot remain in cs_2 , it can only get stuck in nc_2 or w_2 .
- 3. When P_2 executes the test in the **if**-statement, we either have $C_1 = 1$ or $C_1 > 1$ (since $\Box C_1 > 0$). In the latter case, P_2 moves to f_2 .
- 4. Due to fair process execution, f_2 will be executed eventually, ant right after this, $C_1 = 1$.
- 5. If at any time $C_1 = 1$ it will remain so for ever since P_1 is assumed to stay in w_1 and P_2 cannot change C_1 to any other value than 1.
- 6. When P_2 is in nc_2 we cannot have $C_1 > 1$ according to K_1 . Since $\Box C_1 > 0$, it must therefore be 1. Thus, we have $\Box in ik_2 \Rightarrow \Box C_1 = 1$.
- 7. If $\Box C_1 = 1$, P_1 will eventually discover this and leave w_1

8. This contradics the assumption $\Box in w_1$.

Question 1.3

- (a) Since G_i and H_i now become *local invariants*, these are immediately seen to still hold. Likewise, the argument for I holds and hence the mutual exclusion proof is still valid.
- (b) Consider the following program execution:

	C_1	C_2
Initielt	0	0
P_1 executes nc_1 , a_1 , and enters cs_1	1	0
P_2 executes nc_2, a_2	1	2
P_1 executes d_1, nc_1, a_1	3	2

Both process are now caught in w_1 . Since a deadlock can occur between the entry-protocols, the implementation is no longer resolute.

2. Solution for Concurrent Systems Exam December 2001, Problem 1

Question 1.1

(a) I holds initially since y = 0.

All three a-actions are potentially dangerous for I:

- a_1 : Is executed only if y = 0 and does not change y. Thus y = 0 after the action and I holds.
- a_2 : If x = 0 when executed, y = 0 after and I holds. If x > 0 when executed, $y > 0 \land x = 0$ after, i.e. after the action $x \neq y$ and I holds
- a₃: After this action we always have $x = 1 \land y = 2$, thus I holds after the actions.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the program.

(b) Transition graph:

The initial state is (0,0). Further there are an a_2 self-loop on the state (0,0) and an a_3 self-loop on state (1,2) (not shown).

(c) From the transition graph, we see that the state (x, y) = (1, 2) is reachable and therefore $(x = 0 \lor y = 0)$ is **not** an invariant of the program.

Question 1.2

- (a) Given a transition graph, weak fairness ensures that the execution cannot remain forever in a state where there are enabled actions leading to other states. By inspecting the possible exection paths in the transition graph we therefore conclude that any execution must pass through (x, y) = (0, 0) over and over again. Thus, $\Box \diamondsuit y = 0$ is a property of the program.
- (b) Likewise, any execution will have to pass through (x, y) = (1, 0) over and over again. Therefore a_3 will be enabled inifinitely often and by strong fairness we then get that a_3 must be taken infinitely often. We therefore get to (x, y) = (1, 2) infinitely often, i.e. $\Box \diamond y = 2$ holds for the program.

Question 1.3

(a) I is violated by the interleaving:

$$(0,0) \xrightarrow{b_1} (0,0) \xrightarrow{c_1} (0,0) \xrightarrow{d_1} (1,0) \xrightarrow{b_1} (1,0) \xrightarrow{c_1} (1,0) \xrightarrow{a_2} (0,1) \xrightarrow{d_1} (1,1)$$

(b) H can be defined as:

$$H \stackrel{\Delta}{=} (x \le 2) \land (at \ c_1 \lor at \ d_1 \Rightarrow x < 2)$$

[The fact that x remains less than 2 at c_1 and d_1 is necessary to ensure that $x \leq 2$ is preserved by d_1 .]

3. Solution for Exam June 1991, Problem 2

Question 2.1

Question 2.2

In the solution below, P signals every Q_i after the execution of A. Furthermore P has been appointed a master for the barrier synchronization of all processes after execution of C_i, \ldots, C_n .

var SA[1..n] : semaphore := 0; A done

SC[1n] : semaphore := 0;	C_i done
SB[1n] : semaphore := 0;	OK to start B_i
process $P =$	process $Q_i[i:1n] =$
repeat	\mathbf{repeat}
A;	$B_i;$
for j in 1 n do $signal(SA[j])$;	wait(SA[i]);
for j in 1 n do $wait(SC[j]);$	$C_i;$
for j in 1 n do $signal(SB[j])$	signal(SC[i]);
forever;	wait(SB[i])
	forever;

[Due to the ending barrier synchronization, it is possible to use *common* semaphores SA and SC instead of SA[1..n] and SC[1..n], but this is **not** true for SB[1..n] since one of the processes may "take an extra coconut" meant for one of the others. Thus, common semaphores should be used only after careful consideration.]

Question 2.3

```
monitor Synch;
var Ok : boolean := false;
                                               - OK to start (A done)
    Done : integer := 0;
                                               -C's done
    OkStart,
    Alldone : condition;
                                               — Wait for all C_i done
procedure Done
  Ok := true;
  signal_all(OkStart);
  wait(Alldone);
procedure Start
  if \neg Ok then wait(OkStart);
procedure End
  Done := Done + 1;
  if Done < n then wait(Alldone);
               else Done := 0;
                     Ok := false;
                     signal_all(Alldone)
```

end Synch;

[Solution assumes no spurious wake-ups.]