
02152 Concurrent Systems Fall 2008 CP Solutions Page 54

Solutions for CP Exercises, December 4

1. Solution for CP Exam December 1998, Problem 1

Question 1.1

(a) At entry in cs1 , C1 = 1 due to the loop condition. In cs1, C1 is not changed by P1.
Further, the only assignment to C1 in P2 is f2 which cannot change C1 = 1. Thus, C1 = 1
in cs1.

(b) Omitted.

(c) I
∆
= C1 = C2 ⇒ C1 = 0 ∧ C2 = 0

I holds initially since C1 = 0 ∧ C2 = 0.

The potenially dangerous actions are changes of C1 and C2. For P1 these are:

a1: After the execution, C1 and C2 are different (cf. (b)). Thus I holds.

d1: If C2 6= 0 before the execution, C1 and C2 are different afterwards. If C2 = 0 before,
both are 0 afterwards. In both cases, I holds.

f1: Before the execution, C1 = 0 cf. H1. Since C1 is not changed by this action, C1 and
C2 differ after the execution, hence I holds.

By symmetry, we see that I is also preserved by all actions in P2. Together with I holding
initially, we conclude that I is an invariant for the program.

(d) Assume that mutual exclusion was violated: in ks1 ∧ in ks2

According to (a), we should then have C1 = 1 ∧ C2 = 1 contradicting I . Thus, mutual
exlusion is ensured for this program.

Question 1.2 (Not required)

It is assumed that P1 stays in w1 for ever:

1. If P1 stays in w1 for ever, it follows from H1 that C1 > 0 must hold forever. Thus,
we can assume 2in w1 og 2C1 > 0 in the following.

2. Due to fair process execution, P2 will eventually reach e2 unless it gets stuck some-
where else. Since we assume that it cannot remain in cs2, it can only get stuck in nc2

or w2.

3. When P2 executes the test in the if-statement, we either have C1 = 1 or C1 > 1 (since
2C1 > 0). In the latter case, P2 moves to f2.

4. Due to fair process execution, f2 will be executed eventually, ant right after this,
C1 = 1.

5. If at any time C1 = 1 it will remain so for ever since P1 is assumed to stay in w1 and
P2 cannot change C1 to any other value than 1.

6. When P2 is in nc2 we cannot have C1 > 1 according to K1. Since 2C1 > 0, it must
therefore be 1. Thus, we have 2in ik2 ⇒ 2C1 = 1.

7. If 2C1 = 1, P1 will eventually discover this and leave w1



02152 Concurrent Systems Fall 2008 CP Solutions Page 55

8. This contradics the assumption 2in w1.

Question 1.3

(a) Since Gi and Hi now become local invariants, these are immediately seen to still hold.
Likewise, the argument for I holds and hence the mutual exclusion proof is still valid.

(b) Consider the following program execution:

C1 C2

Initielt 0 0

P1 executes nc1, a1, and enters cs1 1 0
P2 executes nc2, a2 1 2
P1 executes d1, nc1, a1 3 2

Both process are now caught in w1. Since a deadlock can occur between the entry-protocols,
the implementation is no longer resolute.

2. Solution for Concurrent Systems Exam December 2001, Problem 1

Question 1.1

(a) I holds initially since y = 0.

All three a-actions are potentially dangerous for I :

a1: Is executed only if y = 0 and does not change y . Thus y = 0 after the action and I
holds.

a2: If x = 0 when executed, y = 0 after and I holds. If x > 0 when executed, y > 0 ∧ x = 0
after, i.e. after the action x 6= y and I holds

a3: After this action we always have x = 1 ∧ y = 2, thus I holds after the actions.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.

(b) Transition graph:

(0, 0)

(0, 1)

(0, 2)

(1, 0) (2, 0)

(1, 2)

-
a1

-
a1

@
@

@I a2

@
@

@
@

@
@

@@I

a2

?
a2

��
��	

a2

��

a2

HHj

6
a3

The initial state is (0, 0). Further there are an a2 self-loop on the state (0, 0) and an a3

self-loop on state (1, 2) (not shown).

(c) From the transition graph, we see that the state (x , y) = (1, 2) is reachable and therefore
(x = 0 ∨ y = 0) is not an invariant of the program.



02152 Concurrent Systems Fall 2008 CP Solutions Page 56

Question 1.2

(a) Given a transition graph, weak fairness ensures that the execution cannot remain forever in
a state where there are enabled actions leading to other states. By inspecting the possible
exection paths in the transition graph we therefore conclude that any execution must pass
through (x , y) = (0, 0) over and over again. Thus, 23y = 0 is a property of the program.

(b) Likewise, any execution will have to pass through (x , y) = (1, 0) over and over again.
Therefore a3 will be enabled inifinitely often and by strong fairness we then get that a3

must be taken infinitely often. We therefore get to (x , y) = (1, 2) infinitely often, i.e.
23y = 2 holds for the program.

Question 1.3

(a) I is violated by the interleaving:

(0, 0)
b1

−→ (0, 0)
c1

−→ (0, 0)
d1

−→ (1, 0)
b1

−→ (1, 0)
c1

−→ (1, 0)
a2

−→ (0, 1)
d1

−→ (1, 1)

(b) H can be defined as:

H
∆
= (x ≤ 2) ∧ (at c1 ∨ at d1 ⇒ x < 2)

[The fact that x remains less than 2 at c1 and d1 is necessary to ensure that x ≤ 2 is
preserved by d1.]

3. Solution for Exam June 1991, Problem 2

Question 2.1

B1

C1

A B2

C2

Question 2.2

In the solution below, P signals every Qi after the execution of A. Furthermore P has
been appointed a master for the barrier synchronization of all processes after execution of
Ci , . . . ,Cn .

var SA[1..n] : semaphore := 0; A done



02152 Concurrent Systems Fall 2008 CP Solutions Page 57

SC [1..n] : semaphore := 0; Ci done
SB [1..n] : semaphore := 0; OK to start Bi

process P =
repeat

A;
for j in 1..n do signal(SA[j ]);
for j in 1..n do wait(SC [j ]);
for j in 1..n do signal(SB [j ])

forever;

process Qi [i : 1..n] =
repeat

Bi ;
wait(SA[i ]);
Ci ;
signal(SC [i ]);
wait(SB [i ])

forever;

[Due to the ending barrier synchronization, it is possible to use common semaphores SA
and SC instead of SA[1..n] and SC [1..n], but this is not true for SB [1..n] since one of
the processes may “take an extra coconut” meant for one of the others. Thus, common
semaphores should be used only after careful consideration.]

Question 2.3

monitor Synch;

var Ok : boolean := false; — OK to start (A done)
Done : integer := 0; — C ’s done
OkStart ,
Alldone : condition; — Wait for all Ci done

procedure Done
Ok := true;
signal all(OkStart);
wait(Alldone);

procedure Start
if ¬Ok then wait(OkStart);

procedure End
Done := Done + 1;
if Done < n then wait(Alldone);

else Done := 0;
Ok := false;
signal all(Alldone)

end Synch;

[Solution assumes no spurious wake-ups.]


