02152 Concurrent Systems Fall 2008 CP Solutions Page 54

Solutions for CP Exercises, December 4
1. Solution for CP Exam December 1998, Problem 1
Question 1.1

(a) At entry in ¢s; , €1 = 1 due to the loop condition. In ¢s;, Cj is not changed by P;.
Further, the only assignment to Cj in Ps is fo which cannot change C} = 1. Thus, ¢} =1
in csy.

(b) Omitted.

(C) I é Ci=0C=C=0N0Cy=0

I holds initially since C; =0 A Cy = 0.

The potenially dangerous actions are changes of C} and C5. For P; these are:

a1: After the execution, C) and Cs are different (cf. (b)). Thus I holds.

dy: If Cy # 0 before the execution, ¢} and Cy are different afterwards. If Co = 0 before,
both are 0 afterwards. In both cases, I holds.

fi: Before the execution, C; = 0 cf. H;. Since Cj is not changed by this action, C; and
(s differ after the execution, hence I holds.

By symmetry, we see that [is also preserved by all actions in Po. Together with I holding
initially, we conclude that [is an invariant for the program.

(d) Assume that mutual exclusion was violated: in ks; A in kso

According to (a), we should then have ¢} =1 A Cy = 1 contradicting /. Thus, mutual
exlusion is ensured for this program.

Question 1.2 (Not required)
It is assumed that P; stays in w; for ever:

1. If Py stays in wy for ever, it follows from H; that C; > 0 must hold forever. Thus,
we can assume Oin wy og OC; > 0 in the following.

2. Due to fair process execution, P will eventually reach ey unless it gets stuck some-
where else. Since we assume that it cannot remain in css, it can only get stuck in ncy
or ws.

3. When P, executes the test in the if-statement, we either have ¢} =1 or C; > 1 (since
OC; > 0). In the latter case, P, moves to fo.

4. Due to fair process execution, f, will be executed eventually, ant right after this,
C) =1.

5. If at any time C} = 1 it will remain so for ever since P; is assumed to stay in w; and
P, cannot change C) to any other value than 1.

6. When P, is in ncy we cannot have C; > 1 according to Kj. Since OC) > 0, it must
therefore be 1. Thus, we have Oin iky = OC) = 1.

7. If OC) =1, P will eventually discover this and leave uy

02152 Concurrent Systems Fall 2008 CP Solutions Page 55

8. This contradics the assumption Oin wy.

Question 1.3

(a) Since G; and H; now become local invariants, these are immediately seen to still hold.
Likewise, the argument for I holds and hence the mutual exclusion proof is still valid.

(b) Consider the following program execution:

1 G
Initielt 0 0
P; executes ncy, a1, and enters cs; 1 0
P5 executes nco, as 1 2
P; executes di, ney, a; 3 2

Both process are now caught in w;. Since a deadlock can occur between the entry-protocols,
the implementation is no longer resolute.

2. Solution for Concurrent Systems Exam December 2001, Problem 1

Question 1.1

(a) I holds initially since y = 0.
All three a-actions are potentially dangerous for I:
ai: Is executed only if y = 0 and does not change y. Thus y = 0 after the action and [
holds.

as: If x = 0 when executed, y = 0 after and [holds. If x > 0 when executed, y > 0A 2z =0
after, i.e. after the action z # y and I holds

as: After this action we always have x = 1 A y = 2, thus [holds after the actions.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.

(b) Transition graph:

The initial state is (0,0). Further there are an az self-loop on the state (0,0) and an ag
self-loop on state (1,2) (not shown).

(¢) From the transition graph, we see that the state (z,y) = (1,2) is reachable and therefore
(x =0V y =0) is not an invariant of the program.

02152 Concurrent Systems Fall 2008 CP Solutions Page 56

Question 1.2

(a) Given a transition graph, weak fairness ensures that the execution cannot remain forever in
a state where there are enabled actions leading to other states. By inspecting the possible
exection paths in the transition graph we therefore conclude that any execution must pass
through (z,y) = (0,0) over and over again. Thus, OOy = 0 is a property of the program.

(b) Likewise, any execution will have to pass through (z,y) = (1,0) over and over again.
Therefore ag will be enabled inifinitely often and by strong fairness we then get that ag
must be taken infinitely often. We therefore get to (z,y) = (1,2) infinitely often, i.e.
04y = 2 holds for the program.

Question 1.3
(a) I is violated by the interleaving:
(0, 0) L (0,0) = (0, 0) = (1, 0) L (1,0) 25 (1,0) 25 (0, 1) = (1,1)
(b) H can be defined as:
02 (z<2)A(atcy Vat dy = z < 2)

[The fact that z remains less than 2 at ¢; and d; is necessary to ensure that x < 2 is
preserved by d; .|

3. Solution for Exam June 1991, Problem 2

A

g

L0

In the solution below, P signals every (; after the execution of A. Furthermore P has
been appointed a master for the barrier synchronization of all processes after execution of
Ciy..., Ch.

Question 2.1

Gy

Question 2.2

var SA[l..n] : semaphore := 0; A done

02152 Concurrent Systems Fall 2008

SC[1..n] : semaphore := 0;
SB[l..n] : semaphore = 0;

process P =
repeat
A;
for j in 1..n do signal(SA[j]);
for j in 1..n do wait(SCIj]);
for j in 1..n do signal(SB[j])
forever;

CP Solutions Page 57

C; done
OK to start B;

process Q;[i : 1.n] =
repeat
By;
wait(SA[i]);
Ci;
signal (SC[1]);
wait(SBJi])
forever;

[Due to the ending barrier synchronization, it is possible to use common semaphores SA
and SC instead of SA[l..n] and SC[l..n], but this is not true for SB[l..n] since one of
the processes may “take an extra coconut” meant for one of the others. Thus, common
semaphores should be used only after careful consideration.]

Question 2.3

monitor Synch;

var Ok : boolean := false;
Done : integer := 0;
OkStart,

Alldone : condition;

procedure Done
Ok = true;
signal_all(OkStart);
wait(Alldone);

procedure Start
if =Ok then wait(OkStart);

procedure FEnd
Done := Done + 1;
if Done < n then wait(Alldone);
else Done := 0;
Ok := false;
signal_all(Alldone)

end Synch;

[Solution assumes no spurious wake-ups.]

— OK to start (A done)
— (s done

— Wait for all C; done

