
02152 Concurrent Systems Fall 2008 CP Solutions Page 30

Solutions for CP Exercises, September 29

1. Solution for Andrews Ex. 5.4

Given Figure 5.5 in [Andrews] (here in our notation):

monitor RW Controller :

var nr ,nw : integer := 0;
oktoread : condition;
oktowrite : condition;

procedure request read()
while nw > 0 do wait(oktoread);
nr := nr + 1;

procedure release read()
nr := nr − 1;
if nr = 0 then signal(oktowrite)

procedure request write()
while nr > 0 ∨ nw > 0 do wait(oktowrite);
nw := nw + 1;

procedure release write()
nw := nw − 1;
signal(oktowrite)
signal all(oktoread)

end

(a) The signal all operation can be replaced with repeated signalling:

while ¬empty(oktoread) do signal(oktoread);

Alternatively, cascaded wakeup can be used. Then signal all(oktoread) is replaced by a
single signal(oktoread), and request read becomes:

procedure request read()
while nw > 0 do wait(oktoread);
nr := nr + 1;
signal(oktoread);

Cascaded wakeup is especially useful in situations where the number processes to be awak-
ened is not known in advance, eg. may depend on parameters of the woken processes.

(b) To give preference to writers, readers should be held back if there are any pending writers.
Likewise, writers should be favoured after a writing phase. Thus, request read() and
release write() are modfied to:



02152 Concurrent Systems Fall 2008 CP Solutions Page 31

procedure request read()
while nw > 0 ∨ ¬empty(oktowrite) do wait(oktoread);
nr := nr + 1;

procedure release write()
nw := nw − 1;
if ¬empty(oktowrite) then signal(oktowrite)

else signal all(oktoread)

end

(c) A solution which is fair towards both readers and writer can be obtainted by running a
batch of readers after each writer (if possible):

procedure request read()
if ¬empty(oktowrite) then wait(oktoread);
while nw > 0 do wait(oktoread);
nr := nr + 1;

procedure release write()
nw := nw − 1;
if ¬empty(oktoread) then signal all(oktoread)

else signal(oktowrite)

end

Here the if-statemente in request ensures fairness by holding back readers if any writers
are waiting. However, once woken, the readers just enter if possible.

[Spurious wakeups just make a reader progress to the active reader groups which may be
acceptable if these wakeups are sparse.]

(d) [Advanced] In order to get a strict First-Come-First-Served discipline both readers and
writers must be processed in some common entrance queue. Further, if the first process
of this queue discovers that it cannot start (eg. being a writer when readers are active), it
will have to wait being the first to be considered next time. For this to work two condition
queues can be used: pre where processes queue up in FIFO order and front where the
(single) front process of the queue waits. To determine which queue to wait at, a count
ne of the currently entering readers/writers is maintained. Only when being the only one
entering, a process it can go directly to the front position. Whenever a process leaves the
front position, the next process from the pre-queue (if any) is moved to the front.



02152 Concurrent Systems Fall 2008 CP Solutions Page 32

monitor FCFS RW Controller :

var nr ,nw ,ne : integer := 0;
pre : condition;
next : condition;

procedure request read()
ne := ne + 1;
if ne > 1 then wait(pre);
if nw > 0 then wait(front);

signal(pre);
nr := nr + 1;
ne := ne − 1;

procedure release read()
nr := nr − 1;
if nr = 0 then signal(next);

procedure request write()
ne := ne + 1;
if ne > 1 then wait(pre);
if nw > 0 ∨ nr > 0 then wait(next);

signal(pre);
nw := nw + 1;
ne := ne − 1;

procedure release write()
nw := nw − 1;
signal(next);

end

[Due to the wait conditions not being rechecked, this solutions is not robust towards
spurious wakeups.]


