
02152 Concurrent Systems Fall 2008 CP Solutions Page 24

Solutions for CP Exercises, September 22

1. Solution for Andrews Ex. 4.14

In order to achieve concurrent deposit and fech operations, we may try to do only the
slot allocation under mutual exclusion. Then, however, the filling (and emptying) of the
slots can occur out of order. We may choose to loosen the ordering and protect each slot
by its private full/empty semaphores. A more conservative option, shown here, is to keep
the ordering by passing a signal down the slots indicating that the previous slot has been
filled/emptied. This is done through two arrays of semaphores prev full and prev empty :

var buf [0..n − 1] : T ;
front , rear : integer := 0;
full : semaphore := 0;
empty : semaphore := n;
prev full [0..n − 1] : semaphore := 0;
prev empty [0..n − 1] : semaphore := 0;
mutexP ,mutexC : semaphore := 1;

V(prev full); V(pref empty); — first slot OK

process Producer [i : 1..M ] =
var data : T ;

inpos : integer ;
repeat

data := produce;
P(empty);
P(mutexP );
inpos := rear ;
rear := (rear + 1) mod n;
V(mutexP );
buf [inpos] := data;
P(prev full [inpos]);
V(full);
V(prev full [(inpos + 1) mod n)]);

forever

process Consumer [j : 1..N ] =
var result : T ;

outpos : integer ;
repeat

P(full);
P(mutexC );
outpos := front ;
front := (front + 1) mod n;
V(mutexC );
result := buf [outpos];
P(prev empty [outpos]);
V(empty);
V(prev empty [(outpos + 1) mod n)]);
consume result ;

forever

This higher degree of concurrency may be beneficial if the data type T is a large datatype
such that buffer insertions/removals take significant time.


