
02152 Concurrent Systems Fall 2008 CP Solutions Page 17

Solutions for CP Exercises, September 18

1. Solution for CP Exam December 1998, Problem 1

Question 1.1

(a) At entry in cs1 , C1 = 1 due to the loop condition. In cs1, C1 is not changed by P1.
Further, the only assignment to C1 in P2 is f2 which cannot change C1 = 1. Thus, C1 = 1
in cs1.

(b) Omitted.

(c) I
∆
= C1 = C2 ⇒ C1 = 0 ∧ C2 = 0

I holds initially since C1 = 0 ∧ C2 = 0.

The potenially dangerous actions are changes of C1 and C2. For P1 these are:

a1: After the execution, C1 and C2 are different (cf. (b)). Thus I holds.

d1: If C2 6= 0 before the execution, C1 and C2 are different afterwards. If C2 = 0 before,
both are 0 afterwards. In both cases, I holds.

f1: Before the execution, C1 = 0 cf. H1. Since C1 is not changed by this action, C1 and
C2 differ after the execution, hence I holds.

By symmetry, we see that I is also preserved by all actions in P2. Together with I holding
initially, we conclude that I is an invariant for the program.

(d) Assume that mutual exclusion was violated: in ks1 ∧ in ks2

According to (a), we should then have C1 = 1 ∧ C2 = 1 contradicting I . Thus, mutual
exlusion is ensured for this program.

Question 1.2 (Not required)

It is assumed that P1 stays in w1 for ever:

1. If P1 stays in w1 for ever, it follows from H1 that C1 > 0 must hold forever. Thus,
we can assume 2in w1 og 2C1 > 0 in the following.

2. Due to fair process execution, P2 will eventually reach e2 unless it gets stuck some-
where else. Since we assume that it cannot remain in cs2, it can only get stuck in nc2

or w2.

3. When P2 executes the test in the if-statement, we either have C1 = 1 or C1 > 1 (since
2C1 > 0). In the latter case, P2 moves to f2.

4. Due to fair process execution, f2 will be executed eventually, ant right after this,
C1 = 1.

5. If at any time C1 = 1 it will remain so for ever since P1 is assumed to stay in w1 and
P2 cannot change C1 to any other value than 1.

6. When P2 is in nc2 we cannot have C1 > 1 according to K1. Since 2C1 > 0, it must
therefore be 1. Thus, we have 2in ik2 ⇒ 2C1 = 1.

7. If 2C1 = 1, P1 will eventually discover this and leave w1



02152 Concurrent Systems Fall 2008 CP Solutions Page 18

8. This contradics the assumption 2in w1.

Question 1.3

(a) Since Gi and Hi now become local invariants, these are immediately seen to still hold.
Likewise, the argument for I holds and hence the mutual exclusion proof is still valid.

(b) Consider the following program execution:

C1 C2

Initielt 0 0

P1 executes nc1, a1, and enters cs1 1 0
P2 executes nc2, a2 1 2
P1 executes d1, nc1, a1 3 2

Both process are now caught in w1. Since a deadlock can occur between the entry-protocols,
the implementation is no longer resolute.


