
02152 Concurrent Systems Fall 2008 CP Solutions Page 15

Solutions for CP Exercises, September 15

1. Solution for Andrews Ex. 3.2

var l : integer := 1;

process P [i : 1..n] =
var s : integer ;
repeat

non-critical sectioni ;
DEC (l , s);
while s > 0 do {

INC (r , l);
delay;
DEC (l , s);

}
critical sectioni ;
INC (l , s);

forever;

Here, the lock l is used as in the test-and-set solution. However, if the lock is already “set”
(l < 1), the effect of DEC must be undone by INC , before trying again. The correctness
argument (or proof) follows the same line as for the test-and-set solution.

2. Solution for Andrews Ex. 3.13

A first attempt to be able to “use the barrier again” would be to let the last processes that
arrives reset the counter thereby releasing everybody:

var count : integer := 0;

process Worker [i : 1..n] =
repeat

code to implement task i ;
〈 count := count + 1 〉;
if count = n then count := 0;
〈await count = 0 〉;

forever;

In this proposal, however, the processes first released by the reset may race to the next
barrier round and increment count before all processes have seen count = 0. The result is
a deadlock.

The solution is to use two counters ensuring that the first counter is not incremented until
everybody have seen the reset and vice versa:

var count1, count2 : integer := 0;



02152 Concurrent Systems Fall 2008 CP Solutions Page 16

process Worker [i : 1..n] =
repeat

code to implement task i ;
〈 count1 := count1 + 1 〉;
if count1 = n then count1 := 0;
〈await count1 = 0 〉;
〈 count2 := count2 + 1 〉;
if count2 = n then count2 := 0;
〈await count2 = 0 〉;

forever;

Using the fetch-and-add instruction, this can be readily implemented:

process Worker [i : 1..n] =
repeat

code to implement task i ;
if FA(count1, 1) = n − 1 then count1 := 0;
while count1 6= 0 do skip;
if FA(count2, 1) = n − 1 then count2 := 0;
while count2 6= 0 do skip;

forever;


