
02152 Concurrent Systems Fall 2008 CP Solutions Page 33

Solutions for CP Exercises, October 2

1. Solution for Andrews Ex. 5.8

(a) The required invariant must state that the balance never becomes negative:

I
∆
= Bal ≥ 0

The basic problem in this exercise is that the waiting condition for each withdraw(amount)
operation depends on the parameter value amount . A general solution to this is to use
a covering condition, i.e. to wake up all waiting processes, whenever the balance has im-
proved. It is assumed that all amounts belongs to a type of positive integers PosInt .

monitor SimpleAccount

var Bal : integer := 0;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
signal all(positive);

procedure withdraw(amount : PosInt)
while Bal < amount do wait(positive);
Bal := Bal − amount ;

end

(b) Under the standard assumption the the condition queues are FiFO, the customers may be
served FCFS by waking only one at a time, but only as long as the balance is large enough
(using the magic amount function). Special care must be taken to prevent outside processes
from making withdrawals before the woken processes. This could be accomplished by
letting the deposit operation do the balance decrementation as in the FIFO Semaphore
solution shown in Andrews Figure 5.3. Here, however, we take a more general approach.
Whenever a withdrawal process is woken, the monitor is considered busy, and new processes
will have to wait. Now the processes are started in FIFO order by a cascade wakeup:

monitor MagicFSCSAccount

var Bal : integer := 0;
Busy : boolean := false;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
if ¬Busy ∧ ¬empty(positive) ∧ amount(positive) ≤ Bal then

Busy := true;
signal(positive);

procedure withdraw(amount : PosInt)
if Busy ∨ Bal < amount then

wait(positive);



02152 Concurrent Systems Fall 2008 CP Solutions Page 34

Busy := false;
Bal := Bal − amount ; — Bal assumed large enough
if ¬Busy ∧ ¬empty(positive) ∧ amount(positive) ≤ Bal then

Busy := true;
signal(positive);

end

Note that deposit processes may increment Bal , even when the monitor is busy, but that
will not violate the expectations of the woken withdrawal process.

(c) In order to implement the magic function amount giving the requested amount of the first
withdrawal process, two ideas may be applied:

• A new, separate condition queue is used by the first waiting process and that processes
may set a global amount variable. Further processes will have to wait on the old queue.
Now great care must be taken to ensure that exactly one and only one of the waiting
processes proceed to this queue.

• Within the monitor, a datastructure is maintained giving the amounts of the waiting
processes. Thus the datastructure will be parallel to the condition queue. Since the
queue is supposed to be FIFO, a list type will be appropiate.

Here we choose the latter approach, extending the above solution with a list type with
operations append , head and tail :

monitor FSCSAccount

var Bal : integer := 0;
Busy : boolean := false;
amounts : List of integer ;
positive : condition;

procedure deposit(amount : PosInt)
Bal := Bal + amount ;
if ¬Busy ∧ ¬empty(positive) ∧ head(amounts) ≤ Bal then

Busy := true;
amounts := tail(amounts);
signal(positive);

procedure withdraw(amount : PosInt)
if Busy ∨ Bal < amount then

amounts := append(amounts, amount);
wait(positive);
Busy := false;

Bal := Bal − amount ; — Bal assumed large enough
if ¬Busy ∧ ¬empty(positive) ∧ head(amounts) ≤ Bal then

Busy := true;
amounts := tail(amounts);
signal(positive);

end



02152 Concurrent Systems Fall 2008 CP Solutions Page 35

2. Solution for Andrews Ex. 5.13

Let ns, ni , and nd denote the number of active searchers, inserters, and deleters respec-
tively. Then the required invariant is:

I
∆
= 0 ≤ ns ∧ 0 ≤ ni ≤ 1 ∧ 0 ≤ nd ≤ 1 ∧ (nd > 0 ⇒ ns = 0 ∧ ni = 0)

Implementing these figures by monitor variables, the monitor is readily implemented:

monitor ListControl

var ns,ni ,nd : integer := 0;
ok search : condition;
ok insert : condition;
ok delete : condition;

procedure start search()
while nd > 0 do wait(ok search);
ns := ns + 1;

procedure end search()
ns := ns − 1;
if ns = 0 ∧ ni = 0 then signal(ok delete)

procedure start insert()
while nd > 0 ∨ ni > 0 do wait(ok insert);
ni := ni + 1;

procedure end insert()
ni := ni − 1;
if ns = 0 ∧ empty(ok insert) then signal(ok delete)

else signal(ok insert)

procedure start delete()
while ns > 0 ∨ ni > 0 ∨ nd > 0 do wait(ok delete);
nd := nd + 1;

procedure end delete()
nd := nd − 1;
if empty(ok search) ∧ empty(ok insert) then signal(ok delete)

else signal(ok insert)
signal all(ok search)

end

Here, it has been chosen to give preference to searchers/inserters. Another strategy could
be to give preference to deleters or to alternate between the these two groups.



02152 Concurrent Systems Fall 2008 CP Solutions Page 36

3. Solution for Andrews Ex. 5.11

Signal-and-continue semantics:

monitor Swap

var val1, val2 : integer ;
swapping : boolean := false;
swap : condition; — First waits here
done : condition; — Wait for swapping to end

procedure exchange(var value : integer)
while swapping do wait(done);
if empty(swap) then { val1 := value;

wait(swap);
value := val2;
swapping := false;
signal(done); signal(done) }

else { val2 := value;
value := val1;
swapping := true;
signal(swap) }

end

When two processes are ready to exchange values, new processes must not interfere. This
is ensured by the flag swapping that blocks new processes on the done queue. When the
exchange is over, new processes may enter. However at most two of them can engage in a
new exchange (they may be overtaken by other processes though, and thus a while-test
is still needed).

[Due to the unconditional waits, this solutions is not robust towards spurious wakeups.]

Signal-and-urgent-wait semantics:

monitor Swap

var val1, val2 : integer ;
swap : condition; — First waits here

procedure exchange(var value : integer)
if empty(swap) then { wait(swap);

val1 := value;
value := val2 }

else { val2 := value;
signal(swap);
value := val1 }

end

With this semantics, the monitor is greatly simplified by the fact that no new processes
will interfere. The signal(swap) acts like a procedure call that activates the process waiting
at swap.


