
02152 Concurrent Systems Fall 2008 CP Solutions Page 48

Solutions for CP Exercise Class 7

1. Solution for Andrews Ex. 8.14

module Account

op Deposit(d : posinteger);
op Withdraw(w : posinteger);

body

var balance : integer ;

process AccountServer =
repeat

in Deposit(d) → balance := balance + d

[] Withdraw(w) and w ≤ balance → balance := balance − w

ni

forever;

end Account ;

2. Solution for Andrews Ex. 8.15

(a) module ABmeeting

op MeetA();
op MeetB();

body

process AccountServer =
repeat

in MeetA() →

in MeetB() → skip ni;
in MeetB() → skip ni;

ni

forever;

end ABmeeting ;

(b) module ABmeeting

op MeetA();
op MeetB();

body

process AccountServer =
repeat

in MeetA() →

in MeetB() →

in MeetB() → skip ni

ni

ni

forever;

end ABmeeting ;



02152 Concurrent Systems Fall 2008 CP Solutions Page 49

3. module Event

op Pass();
op Clear(var r : integer);
op Release(v : posinteger);

body

var S : integer ;

process EventServer =
repeat

in Pass() and S > 0 → skip

[] Clear(var r) → r := S ; S := 0
[] Release(v) → S := S + v ;

for i in 1..?Pass do

in Pass() → skip ni

ni

forever;

end Event ;

[The loop in the Release branch ensures that all current calls of Pass are processed before
a possible call of Clear as in the monitor version.]

4. The semaphore operation P(s) is implemented by:

var l : integer ;
repeat

e.Pass;
e.Clear(l)

until l > 0;
if l > 1 then e.Release(l − 1)

[The call of Pass ensures that the semaphore value is not tested (with Clear) until it is
known to have been positive. Hereby a busy wait is reduced to a semi-busy one being
much less resource demanding.]



02152 Concurrent Systems Fall 2008 CP Solutions Page 50

5. Solution for Andrews Ex. 8.12

If we can assume that a guard using the function that gives the number of pending
operation calls is re-eavaluated whenever a call is made, we can do with:

module Barrier

op arrive();
body

process Control =
var nr : integer := 0;
repeat

in arrive() and ?arrive >= n → for i in 1..n − 1 do

in arrive() → skip ni

ni

forever;

end Barrier ;

If the guard is not reevaluated, we can instead nest n accepts within each other by
recursion:

module Barrier

op arrive();
body

procedure meet(k : integer)
in arrive() → if k > 1 then meet(k − 1) ni

process Control =
var nr : integer := 0;
repeat

meet(n)
forever;

end Barrier ;

In Ada neither of these solutions are possible since the count-attribute is not reeval-
uated and accept-statements can occur only in the main loop of a task (not within
procedures). Instead the requeue facility must be used.


