
02152 Concurrent Systems Fall 2008 CP Solutions Page 44

Solutions for CP Exercise Class 6

1. Solution for CP Exam December 1998, Problem 4

Question 4.1
A

C

P1

P2

P3

B

P4

Question 4.2

(a) Finishing processes satifying their maximum demands:

Available Can be finished

A B C

0 0 2 P2

0 1 2 P4

0 2 2 P1

1 2 2 P3

1 2 3

Since a sequence exists in which all the processes can have their maximal resource demands
satisfied, the situation is safe.

(b) Even though P4 is granted a C -instance, the above sequence is still possible and the
situation is still safe. Thus, P4 may be granted a C -instance according the bankman’s
algorithm.

2. process Merge =
var x : integer ;
do A ? x → C ! x
[] B ? x → C ! x
od

3. process Sum =
var x , y : integer ;
repeat

if A ? x → B ? y

[] B ? y → A ? x

fi;
C ! x + y

forever

02152 Concurrent Systems Fall 2008 CP Solutions Page 45

4. Solution for Exam June 1994, Problem 3

Question 3.1

Before each round, P2 must synchronize with either P1 or P3. A Petri-net expressing this
is:

�
��

�
��

�
��

�
��

�
��

�
��

A B C?

?
�

6

��

?

?
�

6

� -

�

6

��

?

?
�

6

� -

s s s

Question 3.2

[A synchronization can be implemented by signalling forth and back using two semaphores.
A choice between two synchronizations is then implemented by using a common semaphore
for the signalling:]

var SAC ,SB : semaphore := 0;

process PA =
repeat

P(SAC);
V(SB);
A

forever;

process PB =
repeat

V(SAC);
P(SB);
B

forever;

process PC =
repeat

P(SAC);
V(SB);
C

forever;

[Alternatively, P and V may be exchanged in all three processes.]

5. In order to meet, all processes must synchronize pairwise by CSP-communications. Care
must be taken to avoid deadlock.

process P1 =
repeat

P2 ! ();
P3 ? ();
...

forever

process P2 =
repeat

P1 ? ();
P3 ! ();
...

forever

process P3 =
repeat

P2 ? ();
P1 ! ();
...

forever

02152 Concurrent Systems Fall 2008 CP Solutions Page 46

6. Solution for Andrews Ex. 7.7

type Id = 1..n;
type Time = integer ;
type Op = GetClock(Id) | Delay(Id , integer) | Tick;

chan request : Op;
chan reply [Id] : Time;
chan go[Id] : ();

process User [i : Id] =
. . .

send request(GetClock(i)); — Get clock
receive reply [i](clock);
. . .

send request(Delay(i , period)); — Delay
receive go[i]();
. . .

process Timer =
var op : Op;

q : PrioQueue< (Time, ID) >;
time : Time := 0;

repeat

receive request(op);
case op :

GetClock(id): send reply [id](time);
Delay(id , p): insert(q , (time + p, id));
Tick: time := time + 1;

while nonempty(q) ∧ min(q).Time <= time do

{ send go[min(q).Id](); deletemin(q) }
end case

forever

Here PrioQueue<T > is a priority queue of elements of type T with standard operations
insert , min, and deletemin. Tuples are assumed to be ordered lexicographically starting
with the first component (here the Time component).

02152 Concurrent Systems Fall 2008 CP Solutions Page 47

7. Solution for Andrews Ex. 7.16

Here, the problem is solved using a single probe sent along a ring of processes. In the
probe, one of the processes gives a proposal for the least common value. If a process can
agree, it passes on the probe, otherwise it makes a new proposal. When a proposal has
traversed the ring, a commitment message (Done) is sent around.

type Id = 1..n;
type Val = integer ;
type Op = Probe(Id ,Val) | Done

chan in[Id] : Op;

process P [i : Id] =
var values : set of Val := . . . ;

op : Op;
lcv : Val ; — Least Common Value

lcv := smallest v ∈ values;
if i = 1 then send in[2](Probe(i , lcv));
repeat

receive in[i](op);
case op :

Probe(id : Id , val : Val): if id 6= i then

{ lcv := smallest v ∈ values such that v ≥ val ;
if lcv > val then { id := i ; val := lcv};
send in[i mod n + 1](Probe(id , val) }

else

{ send in[(i mod n + 1](Done);
receive in(op); }

Done: send in[i mod n + 1](Done);
end case

until op = Done;

When all processes have left the repeat-loop, they all have the correct value of lcv (as-
suming it exists) and the channels are empty.

The problem can be solved in many other ways, e.g. by passing several probes simultane-
ously, or using centralized or symmetric communication schemes.

