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Solutions for CP Exercise Class 6

1. Solution for CP Exam December 1998, Problem 4

Question 4.1
A

C
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P2
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Question 4.2

(a) Finishing processes satifying their maximum demands:

Available Can be finished

A B C

0 0 2 P2

0 1 2 P4

0 2 2 P1

1 2 2 P3

1 2 3

Since a sequence exists in which all the processes can have their maximal resource demands
satisfied, the situation is safe.

(b) Even though P4 is granted a C -instance, the above sequence is still possible and the
situation is still safe. Thus, P4 may be granted a C -instance according the bankman’s
algorithm.

2. process Merge =
var x : integer ;
do A ? x → C ! x
[] B ? x → C ! x
od

3. process Sum =
var x , y : integer ;
repeat

if A ? x → B ? y

[] B ? y → A ? x

fi;
C ! x + y

forever
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4. Solution for Exam June 1994, Problem 3

Question 3.1

Before each round, P2 must synchronize with either P1 or P3. A Petri-net expressing this
is:
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Question 3.2

[A synchronization can be implemented by signalling forth and back using two semaphores.
A choice between two synchronizations is then implemented by using a common semaphore
for the signalling:]

var SAC ,SB : semaphore := 0;

process PA =
repeat

P(SAC );
V(SB );
A

forever;

process PB =
repeat

V(SAC );
P(SB );
B

forever;

process PC =
repeat

P(SAC );
V(SB );
C

forever;

[Alternatively, P and V may be exchanged in all three processes.]

5. In order to meet, all processes must synchronize pairwise by CSP-communications. Care
must be taken to avoid deadlock.

process P1 =
repeat

P2 ! ();
P3 ? ();
...

forever

process P2 =
repeat

P1 ? ();
P3 ! ();
...

forever

process P3 =
repeat

P2 ? ();
P1 ! ();
...

forever
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6. Solution for Andrews Ex. 7.7

type Id = 1..n;
type Time = integer ;
type Op = GetClock(Id) | Delay(Id , integer) | Tick;

chan request : Op;
chan reply [Id ] : Time;
chan go[Id ] : ();

process User [i : Id ] =
. . .

send request(GetClock(i)); — Get clock
receive reply [i ](clock);
. . .

send request(Delay(i , period)); — Delay
receive go[i ]();
. . .

process Timer =
var op : Op;

q : PrioQueue< (Time, ID) >;
time : Time := 0;

repeat

receive request(op);
case op :

GetClock(id): send reply [id ](time);
Delay(id , p): insert(q , (time + p, id));
Tick: time := time + 1;

while nonempty(q) ∧ min(q).Time <= time do

{ send go[min(q).Id ](); deletemin(q) }
end case

forever

Here PrioQueue<T > is a priority queue of elements of type T with standard operations
insert , min, and deletemin. Tuples are assumed to be ordered lexicographically starting
with the first component (here the Time component).
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7. Solution for Andrews Ex. 7.16

Here, the problem is solved using a single probe sent along a ring of processes. In the
probe, one of the processes gives a proposal for the least common value. If a process can
agree, it passes on the probe, otherwise it makes a new proposal. When a proposal has
traversed the ring, a commitment message (Done) is sent around.

type Id = 1..n;
type Val = integer ;
type Op = Probe(Id ,Val) | Done

chan in[Id ] : Op;

process P [i : Id ] =
var values : set of Val := . . . ;

op : Op;
lcv : Val ; — Least Common Value

lcv := smallest v ∈ values;
if i = 1 then send in[2](Probe(i , lcv));
repeat

receive in[i ](op);
case op :

Probe(id : Id , val : Val): if id 6= i then

{ lcv := smallest v ∈ values such that v ≥ val ;
if lcv > val then { id := i ; val := lcv};
send in[i mod n + 1](Probe(id , val) }

else

{ send in[(i mod n + 1](Done);
receive in(op); }

Done: send in[i mod n + 1](Done);
end case

until op = Done;

When all processes have left the repeat-loop, they all have the correct value of lcv (as-
suming it exists) and the channels are empty.

The problem can be solved in many other ways, e.g. by passing several probes simultane-
ously, or using centralized or symmetric communication schemes.


