
02152 Concurrent Systems Fall 2008 CP Solutions Page 37

Solutions for CP Exercise Class 5

1. By introducing a variable, next , indicating the smallest waketime of any waiting processes,
the number of unnecessary wakeups may be considerably reduced. Using our notation:

monitor Timer

var tod : integer := 0;
next : integer := ∞;
check : condition;

procedure delay(interval : integer)
var waketime : integer ;
waketime := tod + interval ;
while tod < waketime do

if waketime < next then next := waketime;
wait(check);

procedure tick()
tod := tod + 1;
if tod ≥ next then {next := ∞; signal all(check)}

end

2. Both are used for letting a process wait, but they are indeed different:

• Semaphores may be used anywhere. Condition queues are associated with monitors
and may only be used within these.

• The wait operation on a condition queue atomically realeases the monitor while
putting the calling process on the queue.

If a P-operation on a semaphore is made within a monitor operation, the process will
just wait on the semaphore while the monitor’s critical region remains locked.

• If there are no waiting processes, a V operation on a semaphore is remembered by
incrementing the semaphore value, while signalling an empty condition queue has no
effect.

3. Assuming that the variable b is protected by the monitor’s critical region, this will lead to
a deadlock since the critical region is not released during calls of sleep().

4.

(a) A straightforward solution could be:

monitor ChunkSem

var s : integer := 0;
Empty : condition;
NonEmpty : condition;



02152 Concurrent Systems Fall 2008 CP Solutions Page 38

procedure P()
while s = 0 do wait(NonEmpty);
s := s − 1;
if s = 0 then signal(Empty)

procedure V ()
while s 6= 0 do wait(Empty);
s := s + M ;
signal all(NonEmpty)

end

(b) For the monitor, the following safety invariant should hold:

I1
∆
= 0 ≤ s ≤ M

Provided M ≥ 1, this readily follows from the intialization and the while tests.

(c) We now try to express that that no calls of the P()-operation are ever “forgotten”. This
would be the case, if there remained processes but s was still positive. Thus we must
require:

I2
∆
= waiting(NonEmpty) > 0 ⇒ s = 0

(d) If many processes are waiting on NonEmpty and M is small, most these processes will
be unnecessarily woken up. In order to wake up only as many as can carry through the
P()-operation, either a limited number of signals may be made or cascaded wakeup may
be applied. Here we show the cascade solution:

monitor ChunkSem

var s : integer := 0;
Empty : condition;
NonEmpty : condition;

procedure P()
while s = 0 do wait(NonEmpty);
s := s − 1;
if s > 0 then signal(NonEmpty)

else signal(Empty)

procedure V ()
while s 6= 0 do wait(Empty);
s := s + M ;
signal(NonEmpty)

end

Now, the property I2 does not necessarily hold at entry to a monitor operation, since there
may be processes left on the queue while a woken process is waiting to get back to the
monitor. Therefore the invariant will have to be weakened to talk about the state only
when woken processes have been processed.



02152 Concurrent Systems Fall 2008 CP Solutions Page 39

I3
∆
= waiting(NonEmpty) > 0 ∧ woken(NonEmpty) = 0 ⇒ s = 0

[This can be formulated in a number of equivalent ways.]

5. Solution for Mon.3

A variable sum accumulates the contributions. To prevent new processes from interfering
with the sharing of the loot, a flag sharing and a separate condition queue hold is used to
hold these back while the sharing takes place.

monitor ShareLoot

var count : integer := 0;
sum : integer := 0;
sharing : boolean := false;
res : integer ;
c : condition; — Common waiting queue
hold : condition; — Wait for round to end

function SYNC (v : integer) : integer

var res : integer ;
while sharing do wait(hold);
count := count + 1;
sum := sum + v ;
if count = N then {sharing := true; res := sum/N ; signal all(c)};
while ¬sharing do wait(c);
count := count − 1;
if count = 0 then {sharing := false; sum := 0; signal all(hold)};
return res

end

If used by more than N processes, the monitor should let them share their loot in groups
of N without any interference.

The given solution works this way since the while-loop around wait(hold) prevents more
than N to proceed to the counting phase. However, due to the signal all(hold), the order-
ing of the processes may not be preserved and many processes may be woken unnecessarily.
This can be improved upon by changing the last if statement to signal only N times:

if count = 0 then { sharing := false;
sum := 0;
for i in 1..N do signal(hold)

};

6. Since both waits recheck their conditions, the solutions shown in point 5. is robust towards
spurious wakeups.



02152 Concurrent Systems Fall 2008 CP Solutions Page 40

7. Since the two queues in the solution in point 5. are not active at the same time, it is
possible to implement the monitor in Java using the the single Java waiting queue for both
waiting points.

class ShareLoot {

int count = 0;

int sum = 0;

int res:

boolean sharing = false;

public synchronized int sync(int v) {

int res;

while (sharing) try {wait();} catch (Exception e) {};

count++;

sum = sum + v;

if (count == N) { sharing = true; res := sum/N; notifyAll(); }

while (! sharing) try {wait();} catch (Exception e) {};

count--;

if (count == 0) {

sharing = false; sum = 0;

notifyAll(); // wake up any thread ready for next round

}

return res;

}

}

As the Mon.3 solution, this one allows for more than N processes using the monitor.
However, due to the lack of ordering in the Java waiting queue, a limited notification will
not ensure preservation of ordering for this solution


