
02152 Concurrent Systems Fall 2008 CP Solutions Page 26

Solutions for CP Exercise Class 4

1. Solution for Andrews Ex. 4.24

The idea is that a writer should “take all n coconuts” to make sure that no readers are
active. This has to be done through n single P-operations, but this could lead to deadlock
if started by more than one writer. Therefore, writers first have to get the right to start
this operation by entring a critical region protected by another semaphore mutexw .

var rw : semaphore := n;
mutexw : semaphore := 1;

process Reader [i : 1..n] =
. . .

P(rw);
read the database;
V(rw);
. . .

process Writer [j : 1..m] =
. . .

P(mutexw );
for k in 1..n do P(rw);
read the database;
for k in 1..n do V(rw);
V(mutexw );
. . .

This solution is fair towards both readers and writers if the semaphores are strongly fair
(e.g. FIFO).

2. In general, the semaphores of the Sema.3 program may be signalled when they are already
1 (see solution to point 3. below). The effect for the various kinds of binary semaphores
are:

(i) V (S ): 〈 if s = 0 then s := 1 〉 or just 〈 s := 1 〉

Here a signal may be lost with the result that two operations opA and opB start to
alternate rather than run concurrently.

(ii) V (S ): 〈 s := (s + 1) mod 2 〉

Here two signals may be lost with the result that the system deadlocks.

(iii) V (S ): 〈 s = 0 → s := s + 1 〉

In the given program, this variant just makes a fast process wait a little before it
would otherwise do, so this does not influence the synchronization of the operations.
In general, however, this kind of binary semaphore is more prone to deadlock. That
is, you can construct more complex programs which will deadlock with this kind of
semaphore but not with general semaphores.



02152 Concurrent Systems Fall 2008 CP Solutions Page 27

3. Solution for Sema.3

(a) The solution to the meeting problem (see [Basic]) does not work for binary semaphores
since the following execution is possible:

Process A signals SB .

Process B signals SA.

Process A passes P(SA), executes OPA and signals SB .

Now, two signallings on SB have been performed without an intermediate wait. The precise
effect of this depends on the particular kind of binary semaphore and should generally be
avoided.

(b) A solution with binary semaphores is obtained by (getting the idea of) interchanging P

and V in one of the processes:

SYNCA: V(SB );
P(SA);

SYNCB : P(SB );
V(SA);

That this solution still ensures that the two operations do not deviate from each other is
proven by using the semaphore invariants as before. Furthermore, we may show that the
values of the semaphores can never exceed 1. From the program, we obtain the following
inequalities:

#P(SA) ≤ #V(SB) ≤ #P(SA) + 1
#V(SA) ≤ #P(SB) ≤ #V(SA) + 1

Since SB is initialized to 0 we have the semaphore invariant #P(SB ) ≤ #V(SB ). Together
with the above we get:

#V(SA) ≤ #P(SB ) ≤ #V(SB ) ≤ #P(SA) + 1

Subtracting #P(SA) from both sides we get:

#V(SA) − #P(SA) ≤ 1

or, as the left hand side is precisely the semaphore value sa ,

sa ≤ 1

That is, using general semaphores the value of SA can never exceed 1. Thus, SA may as
well be implemented by a binary semaphore. Correspondingly we can show that sb ≤ 1.

4. Solution for Andrews Ex. 4.6

To implement the sleep/wakeup mechanism, we need a semaphore for mutual exclusion
and one for suspension. A counter keeps track of the number of waiting processes.

var S : semaphore := 1;
Q : semaphore := 0;
K : integer := 0;



02152 Concurrent Systems Fall 2008 CP Solutions Page 28

sleep: P(S );
K := K + 1;
V(S )
P(Q);
K := K − 1;
if K > 0 then V(Q)

else V(S )

wakeup: P(S );
if K > 0 then V(Q)

else V(S )

Note that a solution in which sleep increments K and waits on Q and wakeup signals K

times does not work, since the signals may be taken by new processes arriving later. The
above solution using the baton technique ensures that new processes are not allowed to
interfere during the cascaded wakeup.

5. Solution for Mon.4

monitor Event

var c : condition;

procedure sleep()
wait(c)

procedure wakeup()
signal all(c)

end

[Note that since no conditions are checked after the wait, this solution would not work if
spurious wake-ups could occur.]

6. Solution for Mon.1

monitor Meet

var OK : boolean := false; — Has the the other arrived?
c : condition; — First one waits here

procedure SYNCA()
if OK then {OK := false; signal(c)}

else {OK := true; wait(c)}

procedure SYNCB() — As SYNCA, but coded alternatively
OK := ¬OK ;
if ¬OK then signal(c) else wait(c);

end

If we utilize the possibility of asking whether a condition queue is empty or not, we may
eliminate the variable OK and both operations become:

procedure SYNCA/B()

if empty(c) then wait(c) else signal(c)



02152 Concurrent Systems Fall 2008 CP Solutions Page 29

There are a number of other (more complex) solution where different queues are used,
where each process has a flag etc.

7. Solution for Mon.2

We introduce a counter that keeps track of how many processes that have arrived at the
meeting point. The last process starts all the others using signal all .

monitor Barrier

var count : integer := 0;
c : condition; – Common waiting queue

procedure SYNC ()
count := count + 1;
if count < N then wait(c);

else {count := 0; signal all(c)}

end

[This solution is not robust towards spurious wake-ups.]


