
02152 Concurrent Systems Fall 2008 CP Solutions Page 19

Solutions for Exercise Class 3

1. (a) 2¬Snows(Bermuda)

(b) 2(Snows(Helsinki) ⇒ Snows(Finland))

(c) 2(Snows(Norway) ⇒ 3Snows(Sweden))

(d) 23Snows(DK ) ∧ 23Snows(NZ ) ∧ 2¬(Snows(DK ) ∧ Snows(NZ ))

(e) 2(Snows(Sahara) ⇒ 2Snows(Sahara))

(f) 2∃x : Snows(x )

2. Solution for Theory.1

Question 1.1

(a) I holds initially since x = 0 ∧ y = 0.

All three a-actions are potenially dangerous for I :

a1: Assuming I to hold before the actions, the precondition ensures that 0 < y ≤ 2 after
the actions. Further x = y and therefore I holds after execution of a1.

a2: The precondition x = 0 and the effect ensures x = 0 ∧ y = 0 after the actions. Thus,
I holds.

a3: If I holds before the actions, we must have 0 = x ≤ y ≤ 2 after the actions, thus I

still holds.

Since I holds initially and is preserved by all atomic actions, I is an invariant of the
program.

(b) Transition graph:
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Further there are a3 self-loops on states (0, 0), (0, 1), and (0, 2) plus an a2 self-loop on
state (0, 0). Since these are relevant only for liveness properties and only under less than
weak fairness assumptions, they are not shown.

(c) From the transition graph, showing the complete reachable state space, we see by inpection
that (x , y) = (1, 2) is not reachable and thus ¬(x = 1 ∧ y = 2) is an invariant of the
program.

Question 1.2

[Assuming at least weak fairness, the self-loops on the transition graph are irrelevant.]
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(a) Given a transition graph, weak fairness ensures that the execution cannot remain forever
in a state which can be left by one or more actions. For the transition graph we therefore
conclude that any execution must pass through (x , y) = (1, 1) over and over again. Thus,
23x = 1 is satisfied.

(b) Consider the infinite execution

(0, 0)
a1−→ (1, 0)

a3−→ (0, 1)
a2−→ (0, 0)

a1−→ (1, 0)
a3−→ · · ·

In this execution, all actions are executed infinitely often, thus strong fairness is satisfied.
However, no state with x = 2 is met.

Note: The notion of fairness is related to actions. If a particular action is taken in any

state, fairness is satisfied for that action.

Question 1.3

(a) If a2 cannot be considered atomic as a whole, by the default assumption of atomic reads
and writes, it will correspond to

b2: 〈await x = 0 〉; c2: 〈 y := 0 〉

This can be depicted by the transition diagram:
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c2: y := 0

Now, the interleaving

(0, 0)
b2−→ (0, 0)

a1−→ (1, 1)
c2−→ (1, 0)

violates I .

(b) H can be defined as:

H
∆
= I ∧ (at c1 ⇒ y < 2) ∧ (at d1 ⇒ x ≤ t < 2)

which is readily seen to hold initially and imply I . Further, H is preserved by all atomic
actions. Especially, the conjunct (at d1 ⇒ x ≤ t < 2) is needed to conclude I after d1.
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3. Solution for Sema.1

Direct “translation” of the program to a Petri Net:

P1: P2: P3:
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Two Petri Nets that both directly expresses how A, B , and C are synchronized:
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3. Solution for Sema.2

We here chose PD to be the “master” that starts up PA which in turn signals PB or PC :

var SA,SBC ,SD : semaphore := 0;

process PA;
repeat

P(SA);
A;
V(SBC )

forever;

process PB ;
repeat

P(SBC );
B ;
V(SD)

forever;

process PC ;
repeat

P(SBC );
C ;
V(SD)

forever;

process PD ;
repeat

V(SA);
D ;
P(SD)

forever;
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4. Solution for Sema.4

Proposal I

For each pair of processes (Pi ,Pj ) we introduce a semaphore Sij that is used for signalling
from Pi to Pj . Each process signals the two other ones and awaits a signal from each of
these:

var SAB ,SAC ,SBA,SBC ,SCA,SCB : semaphore := 0;

SYNCA:
V(SAB );
V(SAC );
P(SBA);
P(SCA);

SYNCB :
V(SBA);
V(SBC );
P(SAB );
P(SCB );

SYNCC :
V(SCA);
V(SCB );
P(SAC );
P(SBC );

This solution is readily shown to be correct using the semaphore invariant.

Proposal II

Each process has a semaphore to be signalled by the other processes. Each process starts
by signalling to each of the two other ones and then waits on its own semaphore for two
signals (which are expected to from each of the other processes).

var SA,SB ,SC : semaphore := 0;

SYNCA:
V(SB );
V(SC );
P(SA);
P(SA);

SYNCB :
V(SA);
V(SC );
P(SB );
P(SB );

SYNCC :
V(SA);
V(SB );
P(SC );
P(SC );

This solution is correct but works so marginally that it cannot be shown directly by use
of the semaphore invariant!

NB: The “dual” solution below, where each process signals its own semaphore twice and
then waits on each of the other semaphores does not work. The error is that a process may
“use” a signal that was supposed for another process.

var SA,SB ,SC : semaphore := 0;

SYNCA:
V(SA);
V(SA);
P(SB );
P(SC );

SYNCB :
V(SB );
V(SB );
P(SA);
P(SC );

SYNCC :
V(SC );
V(SC );
P(SA);
P(SB );
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The circular solution below does not work either :

var SA,SB ,SC : semaphore := 0;

SYNCA:
V(SB );
P(SA);

SYNCB :
V(SC );
P(SB );

SYNCC :
V(SA);
P(SC );

It has the general fault that a process does not wait for all the other processes. If a
signalling “the other way round” is added, it will work.


