02152 Concurrent Systems Fall 2008 CP Solutions Page 11

Solutions for CP Exercise Class 2

1. The number of critical references in the statements are seen to be:
a:2,b:1,¢:2,d:1,e:0,f:2
Thus, only statements b, d, and e can be considered atomic.
[Note that each occurrence of z in f should be counted as critical reference. An optimizing
compiler may read it into a register only once, but we cannot assmume that in general.]
2. First question: NO. z := x + 2 and z := z + 1 can be executed in any sequential order,
but are not atomic.

Second question: NO. z := 1 and z := 2 are each atomic, but the order is important.

3. The final value of z may range from 2 (!) to 10.

Assuming the two processes to be called P; and Ps, this is how it can get as low as 2:

Initially:

P; reads 0 from z.

Ps increments z four times.
Py writes 1.

Ps reads 1 from z.

P; increments z four times.
Py writes 2.

N Ut~ RO O 8

It can be shown (using invariants — not imagination!) that this is the smallest result.

4. If a variable spans more than one memory word, it has to be accessed using several bus
cycles. If these words are accessed by other processors or devices, intermediate memory
states may be seen. Even if used only by a single processor, the access to a larger memory
area (e.g. a record/structure) is likely to be divided into interruptable steps.

5. Usually the least addressable unit of memory is a byte. Thus to change a boolean variable
represented as a bit of a byte, it is necessary to read the whole byte into a register, change
the bit by masking and finally store the byte againg. This will not be atomic.

6. Solution for Share.2

(a) First we note that the statement C) := = (5 is not atomic since C} is a shared variable and
(s is a variable read by the other process. Rewriting to atomic actions we the following
entry protocol for P;:

repeat
< tl = —|C2 >;
<Ci = 1>

until <—-C5>;

Correspondingly for process Ps. Transition diagrams:

02152 Concurrent Systems Fall 2008 CP Solutions Page 12

Py Py

non criticaly non criticals

-/ 02 —
criticaly criticals

Cy = false Cy = false

(b) The algorithm does not ensure mutual exclusion. We now see that with the initializations
given, an execution in which the atomic actions of the two processes alternate will first set
both C-s to true and in the next repetition, both variables false after which both processes
will enter their critical section!

(c) Since the idea of the algorithm is to set ones flag to the opposite of the flag of the other
process, it is tempting to believe that the algoritm will work, if the statements C} := =5
and Cy := —(] are executed atomically. But even assuming these to be atomic, the
following execution is possible:

Ch Co
Initially: false false
P> executes nco, its entry-protocol and enters css. false true
Py executes ne; and (atomically) sets Cp := —Cs. false true
P, leaves cso and executes Cs := false. false false
P; tests Cy and enters cs;. false false
P, executes mco, enters its entry-protocol, sets Cs to true, false true

finds (] to be false and enters css.

Both processes are now in their critical sections!

The trouble is that the value of Cy that is tested is not the same as the one that Cj is set
relative to (and vice versa).

If the until-test in P; is changed to C} and correspondingly in Ps to (b, the algoritm
ensures mutual exclusion given atomic assignments.

To actually prove this we need the following auxiliary invariants:

G
I

in cs; = C; 1=1,2
—|(01 A 02)

> 1>

02152 Concurrent Systems Fall 2008 CP Solutions Page 13

Now assume that both processes are in their critical sections

m csy N\ in csy
According to G; this would mean that both C' variables were true. This, however, would
be in contradiction with I. Thus, if G; and I are invariants, mutual exclusion is ensured.
We are now going to show the auxliary invariants. G; and Gs are seen to be local invariants.

I is shown by an inductive argument:

e Initially I holds since both C} and C5 are false.
e Since e; obviously preserves I, the only potentially dangerous action in Py is a;:

a1: This actions will preserve I, as (C} is set to the negation of (5 and hence one of
them will be false after the action.

e By symmetry, all actions in P will also preserve I.

Thus [is an invariant of the program.

7. In this course, we define a critical region to comprise a set of critical sections which
are pieces of code among which there must be mutual exclusion. In the literature, this
distinction is not always made.

8. Yes. The only constraint is that there cannot be two processes active within the same
region at the same time.

9. Yes. For instance there may be a region protecting the use of a printer and a region
protecting some shared variables. Critical regions may even overlap.

10. Solution for Andrews Ex. 3.3
(a) var [: integer := 1;

process P[i : 1.n] =

var r : integer = 0;
repeat
ncy: non-critical section;;
repeat
Swap(r,1);
until r = 1;
cS1: critical section;;
Swap(r,1);
forever;

We are now going to prove that the above solution does ensure mutual exclusion.

First, we assume that the local variables r are renamed to global variables r; (i = 1..n)
that are all initialized to 0;

02152 Concurrent Systems Fall 2008 CP Solutions Page 14

11.

12.

13.

Next, we prove some auxiliary invariants:

F; 2 mes; =>nr; =1 1=1.n
G 2 10,1
H 2 rco1 i=1.n

Since r; is changed only in P;, F; is a local invariant By induction, H; and G are easily
seen to be invariants since 0 and 1 are the only values being swapped around.

Now we define

1>

I m+nrn+...+r+l=1

This holds intially and since any of the variables are changed only by atomic swapping of
two of them, their sum will remain constant. Therefore, I is an invariant of the program.

Now, if two of the processes P; and P; (j # i) should be in their critical sections at the
same time, F; and together with G and H; would give us

ntrnt...+r+l>2

contradicting the invariant I. Thus, we conclude that this cannot be the case, ie. the
algorithm ensures mutual exclusion.

If two or more processes execute Swap(r;,l) at the same time, one of the will get the
“token” first and thereby obtain access to the region. Which of them it is not determined.
Thus, the algorithm cannot deadlock nor livlock, but it is not fair. Starvation can occur if
other process manages to enter the region inbetween a given process attempts to execute
Swap(r;, 1).

To avoid memory contention by writing to [, its value may be checked before an attempt
is made to change it with Swap:

repeat
while [= 0 do skip;
Swap(r,1);

until r = 1;

This will not effect the proof in (a).

Not included

Most likely. If your computer has an Intel 286 or above compatible processor, there is an
atomic XCHG instructions that may excange a register (local variable) with a memory
location (shared variable). Other (selected) instructions may be performed atomically by
preceding them with the LOCK instruction.

See solution to point 10. above.

See solution to point 10. above.

