
02152 Concurrent Systems Fall 2007 CP Solutions Page 3

Solutions for CP Exercise Class 1

1. Solution for Petri.2

(a) The simplest Petri Net becomes:

�

��

�

��

�

��

�

��

�

��

A

B C

D

?
?

��	 @@R
@@R ��	 �

6

��

?

?
�

6

� -s s

It is seen that it is necessary to introduce an anonymous transition that ensures that the
two sequential processes are synchronized in each round. (This synchronization may also
be expressed in other, less obvious, ways.)

(b) From the above net it is seen that (A,D), (B ,D), (C ,D) can be executed concurrently.
(Since there exists behaviours of the net in which the corresponding transitions may fire
simultanuously.)

(c) For the first round, we get the following six possible interleavings:

A,B ,D

A,D ,B

D ,A,B

A,C ,D

A,D ,C

D ,A,C

2. A place with a single token is added, and a loop from/to this place is added to each of the
transitions A, B , C , and D .

3. Advantages of formal models are clearly that they are precise and unambigious. Further-
more, graphical models like Petri Nets may even be very intuitive. A disadvantage is that
formal models requires the reader to know the modelling language well. Futhermore, the
relationship with the real-world phenomenon being modelled may be less obvious.

4. A fork over a place-node reflects a choice. A fork over a transition-node reflects process

creation.

5.

t3 t1 t2
p3

p1

p2

Possible firings: M0

{t1}
−−→ (1, 1, 1), M0

{t2}
−−→ (1, 1, 1), M0

{t1,t2}
−−−→ (0, 2, 1), M0

{t1,t1}
−−−→ (0, 2, 1)

Note that t1 may fire together with itself, but t2 may not!



02152 Concurrent Systems Fall 2007 CP Solutions Page 4

6.

A B

C

D

7. From the Petri-net, we see the following pattern:

repeat

co

co A ‖ B oc; D

‖
C

oc

forever

8. We define a slave thread for each operation and let the main thread act as a master,
controlling these according to synchronization of the Petri Net:

class Synchronize {

class TA extends Thread { public void run(){ A; }}

class TB extends Thread { public void run(){ B; }}

class TC extends Thread { public void run(){ C; }}

class TD extends Thread { public void run(){ D; }}

public void main(String[] argv){

while (true) {

Thread ta = new TA();

Thread tb = new TB();

Thread tc = new TC();

Thread td = new TD();

ta.start(); tb.start(); tc.start();

ta.join(); tb.join();

td.start();

tc.join(); td.join();

}

}

}

Rather than starting/joining with td, the main thread could itself execute the operation
D .



02152 Concurrent Systems Fall 2007 CP Solutions Page 5

9. Solution for Exercise Trans.1

(1) a1 a2 a3 b1 b2

(2) a1 a2 b1 a3 b2

(3) a1 a2 b1 b2 a3

(4) a1 b1 a2 a3 b2

(5) a1 b1 a2 b2 a3

(6) a1 b1 b2 a2 a3

(7) b1 a1 a2 a3 b2

(8) b1 a1 a2 b2 a3

(9) b1 a1 b2 a2 a3

(10) b1 b2 a1 a2 a3

10. Solution for Exercise Trans.2

The number of interleavings is given by:

(

n1 + n2

n1

)

=

(

n1 + n2

n2

)

=
(n1 + n2)!

n1! ∗ n2!

An argument:

Each interleaving must contain n1 actions from P1 and n2 actions from P2, ie.
in total n1 + n2 actions. We may say that each interleaving has n1 + n2 places
and an interleaving is the uniquely given by selecting n1 of these for the actions
of P1 (the actions are supposed to come in the given order). As known from
combinatorics, the number of ways n1 elements can be selected out of n1 + n2

elements is given by the above expression.

An other argument:

For any interleaving, the actions from P1 can be permuted in n1! ways and
the actions from P2 in n2! ways. From any interleaving, we may thus generate
n1! ∗ n2! permuations of the total of (n1 + n2)! permutations of all actions of P1

and P2. From this, the expression follows.

11. Solution for Andrews Ex. 2.11

(a) The expression evaluation must be divided into three atomic reading steps. Now, each
variable may or may not have been changed when read. Since all changes incidentally
increment each variable by 3, zero to three increments may be seen. Thus, the possible
final values are {3, 6, 9, 12}.

(b) Since the variables are updated by independent processes, each variable still may or may
not have been changed when read irrespective of the ordering of the readings. Thus, the
possible results are again: {3, 6, 9, 12}



02152 Concurrent Systems Fall 2007 CP Solutions Page 6

12. Solution for Andrews Ex. 2.14

(a) No, the statement of the last process, x := x − y , has three critical references, since both
x and y are read and written by other processes. The statement < x := x + y > is by
definition atomic and thus not subject to the rule.

(b) Rewriting the last process to atomic statements < t := x >; < t := t − y >; < x := t >, the
three processes are represented by the transition diagrams:

e

e

?

?
x := x + y

e

e

?

?
y := 0

e

e

e

e

?

?
t := x

?
t := t − y

?
x := t

These give rise to 20 interleavings. Of course, all of these lead to y = 0. Analyzing the
interleavings, we find that x may get the values {0, 1, 2}.


