The Realm of Shared Variables

e Originates in multiprogramming on mono/multi-processors
Examples

e Threads sharing a common address space

e Processes sharing a common file (data base).

e Distributed objects
Observations

e Execution seen as interleaving of atomic actions

e Atomicity of anything but read/writes must be implemented

Selection of Granularity
e Atomic actions must be large to ensure consistency
e Atomic actions should be small to allow for parallelism

e Starting point:

Operations on abstract data types should be atomic

e A concurrent object is a shared data-structure with atomic oper-
ations

e monitor = concurrent object with atomicity by locking

e Monitors should always be the first choice




Implementation of Concurrent Objects
Implicitly by Syntactic Support

e Monitors + condition queues.
Concurrent Pascal, Pascal Plus, Mesa:
monitor, condition, wait(c), signal(c)

Ada95: protected object,when B, requeue

e Critical sections
Java: synchronized (0){... },synchronized
C#: lock (0){...}

e Does not allow for fine-tuning
Explicit use of Synchronization Primitives
e Semaphores (almost any operating system)

e Mutex + conditions (Pthreads, C#/.NET, Java 1.5, not Win32)

Monitor Issues

e Nested monitor calls

— Drop monitor while calling blocking operations
e Deadlocks

— Recursive locks

— Locking hierarchy

— Deadlock detection/retry

— Combining monitors

e Locking of whole structure — degrades concurrency
— Apply R/W locking of operations
— Use individual locking of parts
— Loosen the locking (!1)

e Synchronization overhead
— Prevent sharing by outer critical region
— Use spin locks (on multiprocessors)
— Use non-blocking synchronization (at low or high level)




