
Properties of Concurrent Programs

• Concurrent programs are (usually) reactive

• Properties must deal with behaviour, not results

• Two kinds of functional properties:

– Safety properties Program does nothing wrong

– Liveness properties Program does something (good)

• Real-time and performance requirements may be added

Safety Properties

• A safety property ensures that the program does nothing wrong

Examples

• At most one process may use the printer at a time

• The variable x never decreases

• The motor turns off only if the key has been removed

Formal treatment

• Property φ is satisfied for execution α: φ[α]

• φ is a safety property iff

∀α : ¬φ[α] ⇒ ∃β ≤ α : ∀γ : ¬φ[βγ]

• Can be stated by invariants (and history variables)

• Can be shown by model-checking or inductive proofs



Liveness Properties

• A liveness property ensures that the program makes progress

Examples

• The program will return to input mode again and again

• The variable x will never become constant

• The green light is lit when the Go button is pressed

Formal treatment

• Can be stated using Temporal Logic

• Can be shown by temporal reasoning, e.g. proof lattices

Lack-of-progress Properties

Deadlock

• Deadlock = cycle of processes waiting for each other (for ever)

• Typical cause: incremental reservation of shared resources

Starvation

• A process suffers from starvation if it could make progress, but

never does so

• Typical causes: Unfair scheduling, priorities, bad luck

Livelock

• Livelock = mutual starvation (after-you-after-you)

• Like deadlock, but can be escaped

• Typical cause: Symmetrical strategies

• Note: Andrews sets livelock = deadlock — we don’t



Atomic Actions

Idea

• Atomic = virtually indivisible

Definition

• Two actions, a and b, are mutually atomic iff

a ‖ b has the same effect as a; b or b; a

• A program has atomic actions if they are mutually atomic

• Assuming a to be atomic is denoted by 〈 a 〉

Interleaving Model

• Assume that all actions a program are atomic:

Any (parallel) execution of the program corresponds to some

sequential interleaving of the atomic actions

Critical References

• A simple variable is held in a machine word

• Access to simple variables is assumed atomic on standard HW

• A critical reference is either:

– Reading a simple variable written by another process

– Writing a simple variable accessed by another process

• Access to non-simple variables counts for more critical references

Rule of Critical References

• S contains at most one critical reference ⇒ S is atomic



Transition Systems

• General mathematical model of discrete behaviour

Definitions

• A (labelled) transition system TS is a tuple (Σ,A, T , s0), where:

Σ is a set of states
A is a set of actions (or labels)
T ⊆ Σ ×A× Σ is the transition relation
s0 ∈ Σ is the initial state

• (s, a, s ′) ∈ T :

Action a can be executed in state s resulting in a new state s ′

• For a given TS , this fact is usually written s
a

−→ s ′

• An execution of TS is a finite or infinite sequence

s0
a1−→ s1

a2−→ s2
a3−→ . . .

where s0 is the initial state and (si , ai+1, si+1) ∈ T for every i .

Inductive Invariance Technique

• Let there be given a concurrent program with atomic actions.

• A state predicate I is said to be inductive if

– I holds for the initial state.

– Any atomic action a of the program preserves I , i.e. for any

state s for which I is satisfied, it is either the case that:

a) a cannot be executed in s, or

b) the execution of a in state s results in a state s ′ that again

satisfies I .

• If I is inductive, it is an invariant of the program.

• To show a), known invariants and may be used.

• If I fails to be inductive, it may be strenghtened.


