Operating Systems

Purpose

e Standardized basis for utilizing the computer HW-resources

Functionalities

e Management of activities (processes, threads, IPC)

Security

Memory and file management

System administration and control

Input/output: User interface, networking, special devices

System Layers

Banking Airline Web
system reservation browser
. . Command
Compilers Editors interpreter

Operating system

Machine language

Microarchitecture

Physical devices

} Application programs

| System
programs

* Hardware

System Layers (Unix)

User
interface
Users
Library .
interface Standards utility programs
l (shell, editors, compliers etc)
System User
call mode
interface Standard library
¢ (open, close, read, write, fork, etc)
UNIX operating system)
(process management, memory management, Kernel mode
the file system, I/O, etc) +
Hardware
(CPU, memory, disks, terminals, etc)
Role of API (Windows)
Win32
application
program
Win32 Application Programming Interface
Win32s

Windows 3.x Windows Windows NT Window 2000

95/98/Me

Unix-like systems

System calls Interrupts and traps
. . File Map-{ Page
Terminal handing Sockets naming |ping| faults | gl Process
hangdling creation and
File Virtual termination
Cooked tty Network protocols systems memory
Raw
tty Line) Buffer 1 Page Process
disciplines Routing cache 1 cache scheduling
!
Character Network Disk Process
devices device drivers device drivers dispatching

Hardware

Windows NT /2000/XP/ ...

| POSIX program |

| Win32 program |

| 0S/2 program |

Service ‘ ‘
process | POSIX subsystem |—>| Win32 subsystem |<—| 0S/2 subsystem |
System interface (NT DLL.DLL) |
System services
1/0 mgr . .))
Object [Process[Memory|Security| Cache [PnP | Power [Config| LPC | Win32
mgr mgr mgr mgr mgr | mgr mgr mgr mgr GDI
@ | Kernel g:glee?

Hardware Abstraction layer (HAL)

Hardware

——

-—— Kernel mode —> <«— User mode

Operating System Topics
e Process management
e Memory management
e Synchronization and communication (IPC)
e I/O
e Deadlocks
e File Systems
e Networking
e Security
e Real-time and multimedia

e Distribution

Process Management
e Provide multiple, concurrent activities
e Ensure proper progress of activities
e Ensure protection between unrelated activities
Means
e Resources associated with program contexts (processes)

e Activities represented by execution contexts (threads)

Context switching between activities

Scheduling strategies for swithcing

HW support: Kernel mode + memory management unit

System Call

User program 2

User programs
¢ runin

User program 1 user mode
- Kernel call
S} ~
IS
7]
: ®
§=
] . .
= Service Operating
@ procedure | system
@ runs in
_ kernel mode
@ Dispatch table
\
System Call (Elaborate)
Address
OXFFFFFFFF
-
Return to caller Library
Trap to the kernel procedure
5| Put code for read in register read
10,
4
U #
serspace Increment SP 11
I Call read
3| Pushfd User program
2| Push &buffer calling read
1| Push nbytes
6
(-
Kernel space) 7 8 [syscall
(Operating system) Lisjpsicld handler

Contexts

Program (Process)

e Administrative unit holding resources:
— Memory address space(s)
— Name space(s)
— Access points (handles) to other resources, especially files
— One or more virtual processors
— Security, accounting, and other information

Execution (Thread state)

e State of a virtual processor:
— Registers (including PC and SP)
— Stack
— Scheduling information (thread state, priority, ...)
— Associated program context

Process Creation
Unix

e fork()
Makes an identical copy of calling process except for:
— Pending signals
— Return value

e execve(file,args, env)
Loads a new program into current process and starts it

Windows

e CreateProcess(file,args, ...) (10 parameters)
Loads a program into a new process and starts it

A Unix Shell

while (TRUE) { /% repeat forever /*/
type__prompt(); /% display prompt on the screen %/
read_command(command, params); /* read input line from keyboard */

pid = fork(); /% fork off a child process */
if (pid < 0) {
printf("Unable to fork0); % error condition */
continue; /% repeat the loop */
}
if (pid !=0) {
waitpid (-1, &status, 0); /* parent waits for child x/
}else {

execve(command, params, 0); / child does the work */

}

Process Relationsships
Unix

e Creator becomes parent — only parents can await termination

Windows

e All peers — may pass references

