Inter-Process Communication (IPC)

- Historically only for disjoint, single-threaded processes:
 - Data channels: pipes, sockets, messages
 - Asynchronous signals
- For modern operating systems, threading and sharing must be considered:
 - Synchronization mechanisms: Semaphores, mutexes, ...
 - Means of sharing address space
- Separate mechanisms for intra and inter process synchronization?

Unix IPC

Process-oriented — later adapted to threading

Traditional

- Pipes, named pipes (FIFOs)
- Signals

System V IPC

- Semaphores (atomic multi-wait)
- Message queues
- Shared memory

Other

- Sockets
- Pthread mutexes/conditions may be provided across processes
- POSIX semaphores may be provided across processes

Unix Signals

- Signals can be considered *software interrupts*
- Fixed number of primitive signal types (e.g. SIGTERM, SIGSEGV)
- Signals are *sent* to processes to notify about user og OS events
- Signals are *handled* in context of process (using current stack)
- Signals handled by default or user-provided handler functions
- Signals are handled asynchronously unless blocked
- Blocked signals may be handled synchronously by explicit wait

Observation

• Signals and threads do no blend very well

Shared Memory Process A Process B Physical memory Stack pointer Stack pointer Mapped file Mapped file Unused memor 24K BSS 20K BSS Data 8K Text 0K 0K (c)

Windows IPC

• Designed for multi-threading

Unix-like

- Pipes, named pipes
- Asynchronous Procedure Call (ACP) executed at wait points
- Semaphores, events, mutexes (no conditions!)
- Mailslots (also with broadcast)
- Shared memory
- Sockets (WinSock)

Specialized

- Clipboard
- Common Object Model (COM) client/server call model

_			
_			