Inter-Process Communication (IPC)

e Historically only for disjoint, single-threaded processes:
— Data channels: pipes, sockets, messages
— Asynchronous signals
e For modern operating systems, threading and sharing must be
considered:
— Synchronization mechanisms: Semaphores, mutexes, ...

— Means of sharing address space

e Separate mechanisms for intra and inter process synchronization?

Unix IPC
e Process-oriented — later adapted to threading
Traditional
e Pipes, named pipes (FIFOs)
e Signals
System V IPC
e Semaphores (atomic multi-wait)
e Message queues
e Shared memory
Other
e Sockets
e Pthread mutexes/conditions may be provided across processes

e POSIX semaphores may be provided across processes




Unix Signals

e Signals can be considered software interrupts

Fixed number of primitive signal types (e.g. SIGTERM, SIGSEGV)
Signals are sent to processes to notify about user og OS events
Signals are handled in context of process (using current stack)
Signals handled by default or user-provided handler functions

Signals are handled asynchronously unless blocked

e Blocked signals may be handled synchronously by explicit wait

Observation

e Signals and threads do no blend very well

Shared Memory

Stack pointer —>

Mapped file {

20K

8K
0K

Process A

Unused
memory

Physical memory

Process B

|<— Stack pointer

!

} Mapped file

24K

8K

0K




Windows IPC
e Designed for multi-threading
Unix-like
e Pipes, named pipes
e Asynchronous Procedure Call (ACP) — executed at wait points

Semaphores, events, mutexes (no conditions!)

Mailslots (also with broadcast)

e Shared memory

e Sockets (WinSock)
Specialized

e Clipboard

e Common Object Model (COM) — client/server call model




