Monitors

e Hoare/Brinch Hansen 1973:

Monitor = data abstraction 4+ atomicity 4+ synchronization

Data abstraction

e Given by class construct: Private data variables + operations
Atomicity

e By implicit mutual (or R/W) exclusion among operations

e By explicit use of critical sections in operations
Synchronization

e By explicit condition queues (wait, signal)
— Many variations in sematics

e By use of guards (when B)

Condition Queues
e Explicit mechanism for condition synchronization within monitors

e A condition queue is associated with a monitor, e.g. by declaration

Basic queue operations

e wait(c) Leave monitor and enter ¢ atomically
signal(c) Wake up a single process waiting on ¢ if any
signal_all(c) Wake up all processes waiting on ¢ [SC only]

e Different semantics for signalling process:
SC Signal-and-continue. Signaller continues in monitor
SW Signal-and-wait. Woken process takes over monitor

Hoare Signal-and-urgent-wait
SW + signalling processes have priority to reenter.

Auxiliary Condition Queue Operations

e Given: var c : condition
Queue size

e empty(c) No processes are currently waiting on ¢

e Queue length can be maintained in explicit monitor variables.
Priority Queuing

e wait(c, rank) Wait in ¢ according to rank (ascending)

minrank(c) Return rank of first process waiting in ¢

Monitor Invariants
Idea

e To express local safety properties ensured by the atomicity of
monitor operations.

Definition

e A monitor invariant I is a predicate on the state of a monitor M
that must be true whenever the monitor is free.

e A monitor is free when new processes may start executing monitor
operations.

Consequences
e Any process can assume [at the start of a monitor operation.
e The invariant will put constraints on the order of operations.

e The constraints may express properties of the whole program.

Stating Monitor Invariants

e A monitor invariant may be stated in terms of
— The monitor variables
— Added history variables
— The state of condition queues

— The state of reentry/signalling queues

e Notation:
waiting(c) Number of processes waiting on ¢

woken(c) Number of processes awakened from ¢

e Refinement, e.qg.:

waitingop(c) Number of processes waiting on ¢ from operation op

Sharing via Monitor

° monitor Balance
var SUM, ITEMS : integer := O;

procedure ADD(w : integer)
SUM := SUM+w
ITEMS := ITEMS + 1

procedure PRINT()
if ITEMS # 0 then
print SUM/ITEMS

procedure CLEAR()
SUM :(= 0
ITEMS := 0

end

