

Condition Queues

- Explicit mechanism for condition synchronization within monitors
- A condition queue is associated with a monitor, e.g. by declaration

Basic queue operations

- *wait*(*c*) Leave monitor and enter *c atomically*
 - signal(c) Wake up a single process waiting on c if any
 - $signal_all(c)$ Wake up all processes waiting on c [SC only]
- Different semantics for signalling process:
 - SC Signal-and-continue. Signaller continues in monitor
 - SW Signal-and-wait. Woken process takes over monitor
 - Hoare Signal-and-urgent-wait SW + signalling processes have priority to reenter.

Monitor Invariants

Idea

• To express local safety properties ensured by the *atomicity* of monitor operations.

Definition

- A *monitor invariant I* is a predicate on the state of a monitor *M* that must be true whenever the monitor is free.
- A monitor is *free* when new processes may start executing monitor operations.

Consequences

- Any process can assume *I* at the start of a monitor operation.
- The invariant will put *constraints* on the order of operations.
- The constraints may express properties of the whole program.

Sharin	g via Monitor
• n	nonitor Balance
	var SUM, ITEMS : integer := 0;
	<pre>procedure ADD(w : integer) SUM := SUM + w ITEMS := ITEMS + 1</pre>
	procedure PRINT() if ITEMS ≠ 0 then print SUM/ITEMS
	<pre>procedure CLEAR() SUM := 0 ITEMS := 0</pre>
e	nd