
Monitors
• Hoare/Brinh Hansen 1973:Monitor = data abstration + atomiity + synhronizationData abstration
• Given by lass onstrut: Private data variables + operationsAtomiity
• By impliit mutual (or R/W) exlusion among operations
• By expliit use of ritial setions in operationsSynhronization
• By expliit ondition queues (wait, signal)� Many variations in sematis
• By use of guards (when B)

Condition Queues
• Expliit mehanism for ondition synhronization within monitors
• A ondition queue is assoiated with a monitor, e.g. by delarationBasi queue operations
• wait(c) Leave monitor and enter c atomially

signal(c) Wake up a single proess waiting on c if any
signal all(c) Wake up all proesses waiting on c [SC only℄

• Di�erent semantis for signalling proess:SC Signal-and-ontinue. Signaller ontinues in monitorSW Signal-and-wait. Woken proess takes over monitorHoare Signal-and-urgent-waitSW + signalling proesses have priority to reenter.

Auxiliary Condition Queue Operations
• Given: var c : conditionQueue size
• empty(c) No proesses are urrently waiting on c

• Queue length an be maintained in expliit monitor variables.Priority Queuing
• wait(c, rank) Wait in c aording to rank (asending)

minrank(c) Return rank of �rst proess waiting in c

Monitor InvariantsIdea
• To express loal safety properties ensured by the atomiity ofmonitor operations.De�nition
• A monitor invariant I is a prediate on the state of a monitor Mthat must be true whenever the monitor is free.
• A monitor is free when new proesses may start exeuting monitoroperations.Consequenes
• Any proess an assume I at the start of a monitor operation.
• The invariant will put onstraints on the order of operations.
• The onstraints may express properties of the whole program.

Stating Monitor Invariants
• A monitor invariant may be stated in terms of� The monitor variables� Added history variables� The state of ondition queues� The state of reentry/signalling queues
• Notation:

waiting(c) Number of proesses waiting on c

woken(c) Number of proesses awakened from c

• Re�nement, e.g.:
waitingop(c) Number of proesses waiting on c from operation op

Sharing via Monitor
• monitor Balancevar SUM, ITEMS : integer := 0;proedure ADD(w : integer)

SUM := SUM+ w

ITEMS := ITEMS+ 1proedure PRINT()if ITEMS 6= 0 thenprint SUM/ITEMSproedure CLEAR()

SUM := 0

ITEMS := 0end

