
Welcome to

02152

Concurrent Systems

Fall Semester 2008

Hans Henrik Løvengreen

Robin Sharp

Informatics and Mathematical Modelling

Concurrent Systems Aims

After the course you should

• Understand concepts and notions of concurrency and networking

• Know abstract models of concurrency and principles of verification

• Be well versed in synchronization and communication mechanisms

• Know about underlying implementation principles

• Be aware of concurrency pitfalls and principles for avoiding them

• Know how to test concurrent programs

• Be skilled in writing multi-threaded Java programs

• Be skillled in use of TCP/IP through Java socket programming

• Know about various internet application protocols

• Know about network middleware

• Know a number of concurrency SW-architectures



Concurrent Systems Prerequisites

Required

• Good command of sequential Java

• Good knowledge af algorithms and data structures

• Discrete mathematics, including predicate logic (∀, ⇒)

• Basic knowledge of C-programming

Useful

• Basic knowledge of machine architecture

• Basic knowledge of program representation

• Knowledge of databases

• Knowledge of automata (state machines)

• Knowledge of program semantics

Concurrent Systems Material

• G. Andrews: Foundations of Multithreaded, Parallel, and Dis-

tributed Programming. Textbook

• H.H. Løvengreen: Basic Concurrency Theory. Note (50 Kr.)

• R. Sharp: The Poor Man’s Guide to Computer Networks and their

Applications. Note

• Other notes and auxiliary material will be available online:

www.imm.dtu.dk/courses/02152



Concurrent Systems Evaluation Fall 2008

Mandatory Assignments (∼ 50 %)

• Test ability to apply concepts and notions in practice

•
Assignment no. Set Due

1 Wednesday, Sep 23 Thursday, Oct 23, 12.45

2 Monday, Nov 10 Thursday, Dec 4, 12.45

• Carried out in groups of 2-3 students

• Must be documented by reports

• Hard deadlines

Written Exam (∼ 50 %)

• Test understanding of concepts and notions

• Wednesday December 10

• 4 hours, all (non-electronic) aids allowed

Concurrent Programming

Why?

1. Because the real world is parallel:

many users, many devices ⇒ many tasks to do

By reflecting this parallelism within programs we may get:

• better structure

• better response times

• higher performance (on multi-processors)

2. Because we have parallel machines architectures:

network connected computers, multi-processor computers ⇒

many hands to keep busy

Programs must be (re-)structured to exploit these architectures

Caveat

• Many pitfalls: Race conditions, deadlocks, starvation



Concurrent Programming

How?

• Languages for expressing concurrency

• Models for reasoning about concurrent behaviour

• Mechanisms for solving sychronization issues

• Techniques for proving and testing concurrent programs

• Principles for good design of concurrent systems


