
Conurreny Extensions in Java 1.5java.util.onurrent
• Adoptation of Dough Lea's utility lasses [Lea 00℄
• Synhronization: semaphores, barriers, lathes, bu�ers
• Exeution ontrol: thread pools, futuresjava.util.onurrent.atomi
• Simple atomi operations on salar values
• Read-ompare-update operations for non-bloking synhr.
• May be implemented by monitors, OS, or hardwarejava.util.onurrent.loks
• Basi loking mehanisms for ritial regions (as in C#)
• Provides ondition queues (as in Pthreads)
• Uses a primitive event-mehanism for implementation

Loks
• Lok: Common interfae for mutex-like synhronization primitivesOperations
• For a Lock objet l proteting a ritial region:
• l.lok() Enter ritial regionl.unlok() Leave ritial regionl.tryLok() Try to enter region � abandon if oupied.l.newCondition() Get a ondition queue attahed to the region.
• Also timed and interruptible versions of the lok operation.
• Class ReentrantLock is an implementation of LokReader/Writer Loks
• A ReadWriteLock is a reading lok oupled with a writing lok.

Condition
• Interfae for ondition queues assoiated with loks.Operations
• For a Condition objet assoiated with region of lok l.
• .await() Atomially leave region and enter queue ..signal() Wake a thread in (if any) and ontinue..signalAll() Wake all threads in and ontinue.
• Also timed and interruptible versions of await
• No means of inspeting queue (size et.)
• Allows for spurious wakeups (idiosynrasy of Pthreads)

Full Java Monitors
• lass BoundedBuffer {final Lok mutex = new ReentrantLok();final Condition notFull = mutex.newCondition();final Condition notEmpty = mutex.newCondition();final Objet[℄ items = new Objet[100℄;int putptr, takeptr, ount;publi void put(Objet x) throws InterruptedExeption {mutex.lok();try {while (ount == items.length)notFull.await();items[putptr℄ = x;if (++putptr == items.length) putptr = 0;++ount;notEmpty.signal();} finally {mutex.unlok();}}...

Lok Support
• Private (per thread) binary semaphores for implementing loks.
• Used as private waiting plaesOperations
• The Java LokSupport lass assoiates with eah thread t:� A permit �ag st (0 ≤ s ≤ 1)

• Operationspark() 〈 scur = 1 → scur := 0 〉unpark(t) 〈 st := 1 〉

• Also park with timeout
• Persistene of permit helps to avoid rae onditions

Use of Lok Support
• lass FIFOMutex {private int ount = 0;private Queue<Thread> waiters = new ConurrentLinkedQueue<Thread>();publi void lok() {Thread urrent = Thread.urrentThread();if (urrent != waiters.peek()) {waiters.add(urrent);while (waiters.peek() != urrent) {LokSupport.park();}ount++;}publi void unlok() {if (Thread.urrentThread() == waiters.peek()) {if (--ount == 0) {waiters.remove();LokSupport.unpark(waiters.peek());}}else ...}}

Java Semaphores
• Generalized Dijkstra semaphores
• Lots of peek-and-poke operationsOperations
• A Java Semaphore onsists of:� A permission ount s (s ≥ 0)� A queue of waiting threads� Queue may be (strongly) fair (FIFO)
• Operationss.aquire() 〈 s > 0 → s := s − 1 〉s.release() 〈 s := s + 1 〉s.aquire(n) 〈 s ≥ n → s := s − n 〉s.release(n) 〈 s := s + n 〉

Barrier
• CyclicBarrier: General resuable barrierWorkings
• A barrier is reated with a �xed threshold: new CyliBarrier(N)
• bar.await() Await arrival of N partiipants (threads).(Returns unique �arrival index�)
• The await-operation may be timed
• Barrier beomes broken upon timeout, interrupt . . .

• A broken barrier may be reset to the initial state
• An embedded meeting ation may be provided:new CyliBarrier(N,new Runnable(){publi void run(){ . . . }})

Lath
• A �one-time barrier�
• Typial usage: Initialization synhronizationWorkings
• A CountDownLath objet lath onsists of:� A ount s (s ≥ 0) (initialized to N ≥ 0)� A queue of waiting threads
• Operationslath.await() 〈await s = 0 〉lath.ountDown() 〈 if s > 0 then s := s − 1 〉

• Cannot be reused or reset

Thread-safe Data Strutures
• New Collection lasses are not thread-safe
• A number of thread-safe substitutions are provided
• E�iently implemented by wait-free synhronizationClasses
• Atomi operations, non-bloking:

ConcurrentHashMap, ConcurrentLinkedQueue
• Atomi operations, potentially bloking:

ArrayBlockingQueue (N-bu�er)
LinkedBlockingQueue (Unbounded bu�er)
SynchronousQueue (CSP-hannel)
PriorityBlockingQueue

DelayQueue

Atomi Salar Types
• Provide atomi operations on Integer, Boolean, Long, and Referenetypes and arrays of these
• Operations inlude: set,get, add/sub and ombinations of these
• Based upon read-hek-modify primitiveExample: AtomiInteger
• Seleted operations on AtomicInteger x with value vx.addAndGet(d) 〈 v := v + d ; return v 〉x.getAndInrement() 〈var old = v ; v := v + 1 return old 〉x.ompareAndSet(old,new) 〈 if v = old then

v := new ;return trueelse return false 〉

Non-Bloking Synhronization
• Update operations avoid waiting/bloking, but may fail
• Requires atomi read-hek-modify instrutionsExample with Compare-and-Set
• AtomicInteger x;

• Atomi inrement 〈 x := x + 1 〉repeat
old = x.get();until x.compareAndSet(old,old+ 1);

• Can be extended to larger data types by updating pointers tostrutures.
• Wait-free synhronization furthermore avoids delay

Exeution ontrol
• Mahinery (framework) to deal with ommon usages of threadsNotions
• A task is a piee of work represented by an Runnable objet
• Tasks an be submitted to exeutors
• An exeutor servie also allows for monitoring of submitted tasks
• A Callable objet is a task that may ompute a result
• A Future objet represents the status of (anelable) task
• A thread pool is an exeutor with:� A set of threads between a minimum and maximum number� A keep-alive time for idle threads� A task queue: None, bounded, unbounded
• If queue full, tasks may be rejeted in di�erent ways

Non-bloking IO
• Typial multi-threaded server: One thread � one onnetion
• Simple and e�ient for small number (say < 100) of onnetions
• Large servers an often handle more onnetions than threads
• Non-bloking IO (java.nio): one thread � many onnetionsNotions
• Connetions are onsidered a ase of hannels (also �les . . .)
• A set of hannels may be assoiated with a Selector

• A thread may selet among the seletor hannels
• The thread awaits arrival of data on one of the hannels

