Concurrency Extensions in Java 1.5

java.util.concurrent
e Adoptation of Dough Lea’s utility classes [Lea 00]
e Synchronization: semaphores, barriers, latches, buffers
e Execution control: thread pools, futures
java.util.concurrent.atomic
e Simple atomic operations on scalar values
e Read-compare-update operations for non-blocking synchr.
e May be implemented by monitors, OS, or hardware
java.util.concurrent.locks
e Basic locking mechanisms for critical regions (as in C#)
e Provides condition queues (as in Pthreads)

e Uses a primitive event-mechanism for implementation

Locks
e Lock: Common interface for mutex-like synchronization primitives
Operations

e For a Lock object 1 protecting a critical region:

e 1.lock() Enter critical region
1.unlock() Leave critical region
1.tryLock() Try to enter region — abandon if occupied.

1.newCondition() Get a condition queue attached to the region.
e Also timed and interruptible versions of the lock operation.
e Class ReentrantLock is an implementation of Lock
Reader/Writer Locks

e A ReadWritelLock is a reading lock coupled with a writing lock.

Condition

e Interface for condition queues associated with locks.
Operations

e For a Condition object ¢ associated with region of lock 1.

e c.await() Atomically leave region and enter queue c.
c.signal() Wake a thread in ¢ (if any) and continue.

c.signalA11() Wake all threads in ¢ and continue.

Also timed and interruptible versions of await

No means of inspecting queue (size etc.)

Allows for spurious wakeups (idiosyncrasy of Pthreads)

Full Java Monitors

® class BoundedBuffer {
final Lock mutex = new ReentrantLock();
final Condition notFull = mutex.newCondition();
final Condition notEmpty = mutex.newCondition();

final Object[] items = new Object[100];
int putptr, takeptr, count;

public void put(Object x) throws InterruptedException {
mutex.lock();
try {
while (count == items.length)
notFull.await();
items[putptr] = x;
if (++putptr == items.length) putptr = 0;
++count;
notEmpty.signal() ;
} finally {
mutex.unlock();

Lock Support
e Private (per thread) binary semaphores for implementing locks.
e Used as private waiting places

Operations

e The Java LockSupport class associates with each thread ¢:

— A permit flag s, (0<s<1)

e Operations
park() <Scm‘ =1— Scur : = O>
unpark (%) (st:=1)

e Also park with timeout

e Persistence of permit helps to avoid race conditions

Use of Lock Support

® class FIFOMutex {
private int count = 0;
private Queue<Thread> waiters = new ConcurrentLinkedQueue<Thread>();

public void lock() {
Thread current = Thread.currentThread();
if (current != waiters.peek()) {
waiters.add(current) ;

while (waiters.peek() != current) {
LockSupport.park() ;
}
count++;

}

public void unlock() {
if (Thread.currentThread() == waiters.peek()) {
if (--count == 0) {
waiters.remove() ;
LockSupport .unpark(waiters.peek());
}
}

else ...

Java Semaphores
e Generalized Dijkstra semaphores
e Lots of peek-and-poke operations
Operations

e A Java Semaphore consists of:
— A permission count s (s> 0)
— A queue of waiting threads

— Queue may be (strongly) fair (FIFO)
e Operations

s.acquire() s>0—s:=s5—1)
si=s4+1)

s>n—si=s—mn)

si=s4+n)

(
s.release() (
s.acquire(n) (

(

s.release(n)

Barrier
e CyclicBarrier: General resuable barrier
Workings
e A barrier is created with a fixed threshold: new CyclicBarrier(N)

e bar.await() Await arrival of N participants (threads).
(Returns unique “arrival index’")

e The await-operation may be timed

Barrier becomes broken upon timeout, interrupt ...

A broken barrier may be reset to the initial state

An embedded meeting action may be provided:

new CyclicBarrier(N,new Runnable(){
public void run(O{ ... }
B

Latch

e A “one-time barrier”

e Typical usage: Initialization synchronization
Workings

e A CountDownLatch object latch consists of:
— A count s (s>0) (initialized to N > 0)

— A queue of waiting threads

e Operations
latch.await () (await s = 0)

latch.countDown() (ifs>0Othens:=s—1)

e Cannot be reused or reset

Thread-safe Data Structures
e New Collection classes are not thread-safe
e A number of thread-safe substitutions are provided
e Efficiently implemented by wait-free synchronization
Classes

e Atomic operations, non-blocking:

ConcurrentHashMap, ConcurrentLinkedQueue

e Atomic operations, potentially blocking:

ArrayBlockingQueue (N-buffer)
LinkedBlockingQueue (Unbounded buffer)
SynchronousQueue (CSP-channel)
PriorityBlockingQueue

DelayQueue

Atomic Scalar Types

e Provide atomic operations on Integer, Boolean, Long, and Reference
types and arrays of these

e Operations include: set,get, add/sub and combinations of these
e Based upon read-check-modify primitive
Example: Atomiclnteger

e Selected operations on AtomicInteger x with value v
x.addAndGet (d) (v:=wv+d; returnv)
x.getAndIncrement () (var old =v; v:=v+1 return old)

x.compareAndSet (old ,new) (if v = old then
v I= new;
return true
else
return false)

Non-Blocking Synchronization
e Update operations avoid waiting/blocking, but may fail
e Requires atomic read-check-modify instructions
Example with Compare-and-Set
® AtomicInteger x;

e Atomic increment (z:=z+1)

repeat
old = x.get();
until x.compareAndSet(old,old + 1);

e Can be extended to larger data types by updating pointers to
structures.

e Wait-free synchronization furthermore avoids delay

Execution control
e Machinery (framework) to deal with common usages of threads
Notions
e A task is a piece of work represented by an Runnable object
e Tasks can be submitted to executors
e An executor service also allows for monitoring of submitted tasks
e A Callable object is a task that may compute a result

e A Future object represents the status of (cancelable) task

A thread pool is an executor with:

— A set of threads between a minimum and maximum number
— A keep-alive time for idle threads

— A task queue: None, bounded, unbounded

If queue full, tasks may be rejected in different ways

Non-blocking IO
e Typical multi-threaded server. One thread — one connection
e Simple and efficient for small number (say < 100) of connections

e Large servers can often handle more connections than threads

e Non-blocking IO (java.nio): one thread — many connections
Notions
e Connections are considered a case of channels (also files ...)

e A set of channels may be associated with a Selector
e A thread may select among the selector channels

e The thread awaits arrival of data on one of the channels

