
Informatics and Mathematical Modelling
Technical University of Denmark
Building 321
DK–2800 Lyngby
Denmark

HHL 28–11–2008

02152 CONCURRENT SYSTEMS FALL 2008

CP Exercise Class 8

Monday December 1

Exam Problems

1. Do Exam December 2003, Problem 1 (see reverse)

2. Do Exam December 2003, Problem 2 (see other sheet)

3. Do Exam December 2003, Problem 3 (see other sheet)

Notice that all of these problems are from a 2-hours exam so the percentages states should be
halved for a 4-hours exam. Also problems for a 4-hours exam may be more complex (some
4-hours exams will appear on the course page soon).

Good luck at the exam!



From Concurrent Systems Exam, December 2003 (2-hours)

PROBLEM 1 (approx. 20 %)

Three processes P1,P2, and P3 execute three operations A, B , and C respectively. The opera-
tions are synchronized by means of semaphores:

var SA,SB ,SC : semaphore;

SA := 1; SB := 1; SC := 0;

process P1;
repeat

P(SA);
A;
V(SC )

forever;

process P2;
repeat

P(SB);
B ;
V(SC )

forever;

process P3;
repeat

P(SC );
C ;
P(SC );
V(SA);
V(SB)

forever;

Question 1.1:

(a) Draw a Petri Net in which the three operations A, B , and C are synchronized in the
same way as in the above program. In the net, the operations should be represented by
transitions.

(b) Determine which pairs of operations can be executed concurrently.

(c) State with a brief argument whether or not all three operations can be executed concur-
rently.



From Concurrent Systems Exam, December 2003 (2-hours)

PROBLEM 2 (approx. 30 %)

The questions in this problem can be solved independently of each other.

Question 2.1:

A process P uses three shared integer variables x , y , and z . The variable x is both read and
written by other processes, whereas y and z are only read by other processes. Determine
which of the following statements in P can be considered to be atomic.

a: x := x + 1
b: x := y + 1
c: y := x + 1

d : y := y + 1
e: x := y + z

f : z := y + z

Question 2.2:

A concurrent program is given by:

var x , y : integer := 0;

co x := y + 1 ‖ 〈 y := x + 2 〉; x := 2 oc

(a) Draw a transition diagram for each process.

(b) Determine all possible final states (x , y) of the program.

Question 2.3:

Let x and y be integer variables. Determine which of the predicates P , Q , and R are
preserved by which of the actions a1, a2, and a3, respectively:

P
∆
= x + y ≥ 0

Q
∆
= 0 ≤ y ≤ x

R
∆
= x 6= y

a1: y := 0

a2: 〈 y < 0 → y := x + 1 〉

a3: 〈 y = 0 → x := 0 〉

Question 2.4:

Let x and y be integer variables and let the temporal logic formula F be defined by:

F
∆
= (2 y > x ≥ 0) ∧ (23 x = 0) ∧ (x = 0 ; x 6= 0)

(a) Let states be given by pairs (x , y). Give an example of an execution for which F holds.
The execution should be given as a short sequence of states which is repeated forever.

Now, consider each of the following actions within a program:

a1: 〈await x = 0 〉
a2: 〈await y > 1 〉

a3: 〈await x = 0 ∨ y > 1 〉
a4: 〈await x = 0 ∧ y > 1 〉

Assume that control has reached the particular action and that F is valid for the program.

(b) Determine which of the actions will be eventually executed assuming weak fairness.

(c) Determine which of the actions will be eventually executed assuming strong fairness.



From Concurrent Systems Exam, December 2003 (2-hours)

PROBLEM 3 (approx. 20 %)

Let N be a positive integer. The server-based module Batch given below implements a synchro-
nization mechanism that “collects” a batch of N items provided by calls of put() which may then
be “removed” by a call of unload().

module Batch

op put();
op unload();

body

process Control ;
var count : integer := 0;
repeat

while count < N do

in put() → count := count + 1 ni;
in unload() → count := 0 ni;

forever;

end Batch;

Question 3.1:

Assume N = 3. Suppose that, concurrently, unload() is called by two processes and put()
is called by five processes. Assuming no further calls, describe the overall effect of these
seven calls.

Question 3.2:

Now, the module Batch is to be replaced with a monitor which provides the same operations
and behaves in the same way. Write such a monitor.


