
Informatics and Mathematical Modelling
Technical University of Denmark
Building 321
DK–2800 Lyngby
Denmark

HHL 2008–10–03

02152 CONCURRENT SYSTEMS FALL 2008

CP Exercise Class 5

Monday October 6

Monitor Construction

Unless stated otherwise, you should assume (multiple) condition queues with signal-and-continue

(SC) semantics and without spurious wakeups (ie. the standard semantics used in [Andrews]).
Furthermore the predicate empty(c) and the function length(c) on a condition queue c can be
used.

1. In Andrews Figure 5.7, a Timer monitor is implemented by a covering condition which is
true, ie. whenever the tod (time-of-day) is changed, all waiting processes are woken up.

Optimize the monitor such that the processes are only woken up when the next relevant
point of time is reached.

2. Are there any differences between semaphores and condition queues?

3. What happens if a synchronized Java method contains while (!b) Thread.sleep(100);?

4. Let M be a positive constant. Consider the following specification of a chunk semaphore:

monitor ChunkSem;

var s : integer := 0;

procedure V () : 〈 s = 0 → s := s + M 〉;

procedure P() : 〈 s > 0 → s := s − 1 〉;

end;

(a) Implement the monitor.

(b) State and argue for a monitor invariant expressing the range of the variable s.

(c) State a monitor invariant expressing that calls of P() do not wait unneccesarily.

(d) Suppose that M is small compared to the number of processes that may call P().
Does your solution avoid unneccesary wakeups? If not, try to minimize the wakeups.
Is the property from (c) still a monitor invariant? If not, try to remedy this.

5. Do Exercise Mon.3

How should the monitor work if called by more than N processes? Does your monitor
work in that case?

6. Determine if your monitor is robust towards spurious wakeups.

7. Discuss whether the monitor could be implemented as a Java monitor.


