
Informatics and Mathematical Modelling
Technical University of Denmark
Building 321
DK–2800 Lyngby
Denmark

HHL 25–08–2008

02152 CONCURRENT SYSTEMS

FALL 2008

Auxiliary Exercises



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 1

Petri Nets

Exercise Petri.1

Five boats shuttle between two jetties, A and C, via a jetty B. Jetty A and C each has a
capacity of two boats, whereas jetty B has a capacity of three boats. Make a Petri Net
model of the boat traffic.

Exercise Petri.2

Four actions A, B , C , and D are to be synchronized as follows:

After execution of A, either B or C is executed. Concurrently with this, D is
executed. All of this is repeated forever.

(a) Draw a Petri-net in which the actions A to D are represented by transitions and synchro-
nized as described above.

(b) Which pairs of actions can be executed in parallel?

(c) Which interleavings (sequences of single transition firings) are possible for the first cycle
of the execution?

Exercise Petri.3

Make a Petri Net for following process:

Root Galettes

1 leek 2 large potatoes salt, pepper
2 carrots 1 egg yolk olive oil
1 parsnip (1 tsp Maizena)

The leek is rinsed and finely chopped. The root vegetables are peeled and cut
en julienne. Mix with egg yolk and optionally Maizena (cornflour). Season with
salt and pepper and fry in hot oil like small pancakes, a couple of minutes on
each side. Put on absorbing kitchen paper and serve.

Note: The paste is divided into 10 portions and there are two frying pans avail-
able.

Problem originally due to the Danish cook, Claus Meyer.

Exercise Petri.4

Draw the Petri Net N = (P ,T ,F ) where

P = {p1, p2, p3}
T = {t1, t2, t3}
F = {(p1, t1), (p1, t2), (p3, t2), (p2, t3), (t1, p2), (t2, p2), (t2, p3), (t3, p1)}

with the marking M0 = (2, 0, 1) (corresponding to (p1, p2, p3)).

Write all simultaneous firings possible from M0 using the notation M0

U
−→ M ′.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 2

Transition Systems

Exercise Trans.1

Find all interleavings of the two processes:

Pa : a1, a2, a3

Pb : b1, b2

Exercise Trans.2

Assume that two processes P1 and P2 consist of sequences of n1 and n2 actions respectively.
Find an expression for the number of possible interleavings of P1 and P2.

Exercise Trans.3

Find all interleavings of the three processes:

Pa : a1

Pb: b1, b2

Pc: c1

Exercise Trans.4

Assume that Pi is a process consisting of ni actions. Find an expression for the number
of interleavings of

P1,P2, . . . ,Pk

Exercise Trans.5

Draw transition diagrams for the two processes in the following program:

var X ,Y : Integer ;
X := 1; Y := 2;

cobegin X := Y + 1 ‖ Y := X − 1 coend

Now, draw (the reachable part of) the transition graph for the full program. The nodes
should be states of the form (X ,Y , t1, t2, π1, π2), where ti are local variables and πi are
the control variables of the two processes.

From the graph, determine the possible final values of X and Y .



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 3

Shared Variables

Exercise Share.1 (Lock-step problem)

Write, using shared variables only, to pieces of program, SYNCA and SYNCB , that syn-
chronize to processes PA and PB such that they proceed in lock-steps. More precisely, if
opA and opB are operations in PA and PB respectively, then the number of times these
two operations have been executed must differ by at most one.

process PA;
repeat

SYNCA;
. . .

opA;
. . .

forever

process PB ;
repeat

SYNCB ;
. . .

opB ;
. . .

forever

Exercise Share.2

In the following program, it is attempted to establish a critical region for two concurrent
processes by using two shared boolean variables C1 and C2:

var C1,C2 : boolean;

C1 := false; C2 := false;

process P1;
repeat

nc1: non-critical section1;
r1: repeat

a1: C1 := ¬C2;
until ¬C2;

cs1: critical section1;
e1: C1 := false

forever;

process P2;
repeat

nc2: non-critical section2;
r2: repeat

a2: C2 := ¬C1;
until ¬C1;

cs2: critical section2;
e2: C2 := false

forever;

(a) Draw the transition diagrams for P1 and P2.

(b) Show that the program does not ensure mutual exclusion.

(c) Assume that a1 and a2 are executed as atomic statements instead, i.e. a1: 〈C1 := ¬C2 〉
and a2: 〈C2 := ¬C1 〉.

Determine whether the algorithm now ensures mutual exclusion.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 4

Exercise Share.3

Consider the problem of establishing a critical region using a coordinator process addressed
in Andrews Ex. 3.12. A proposal for the form of the processes is:

process P [i : 1..n] =
repeat

non critical sectioni ;
enter [i ] := true;
〈await in[i ] 〉;
critical sectioni ;
in[i ] := false

forever

(a) Write a proposal for the coordinator process.

(b) Express mutual exclusion among n process as an invariant.

(c) State and prove some auxiliary invariants of your program that may be combined to
show mutual exclusion.

Hint: What can be said about in[i ] in the critical section? What is is known about
the state of the coordinator process when in[i ] is true?

(d) Is your algorithm fair?



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 5

Theory (Safety and Liveness)

Exercise Theory.1

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 y < 2 → y := y + 1; x := y 〉 forever

‖
repeat a2: 〈 x = 0 → y := 0 〉 forever

‖
repeat a3: x := 0 forever

oc

Question 1.1:

(a) Prove inductively that I
∆
= 0 ≤ x ≤ y ≤ 2 is an invariant of the program.

(b) Draw the (reachable part of) the transition graph for the program. Since control
remains at the a-actions, only the (x , y) part of the state needs be shown.

(c) Determine whether ¬(x = 1 ∧ y = 2) is an invariant of the program.

Question 1.2:

(a) Argue that 23x = 1 holds for the program under the assumption of weak fairness.

(b) Show that 23x = 2 does not hold, even under the assumption of strong fairness.

Question 1.3:

(a) Assume that the action a2 cannot be considered atomic as a whole.

Draw the transition diagram representing a2 then and show that I is no longer an
invariant of the program.

(b) In the original program, assume that the action a1 is replaced by the refinement:

b1: await y < 2; c1: t := y ; d1: y := t + 1; e1: 〈 x := y 〉

where t is a local integer variable.

State a predicate H that implies I , holds initially, and is inductive for the program
(i.e. strong enough to be preserved by all atomic actions).



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 6

Semaphores

Exercise Sema.1

Three processes P1, P2, and P3 execute three operations A, B , and C respectively.

The operations are to be synchronized using semaphores as follows:

var SA,SB ,SC : semaphore;

SA := 0; SB := 0; SC := 0;

process PA;
repeat

A;
V(SC );
P(SA)

forever

process PB ;
repeat

B ;
V(SC );
P(SB)

forever

process PC ;
repeat

P(SC );
P(SC );
C ;
V(SA);
V(SB);

forever

Draw a Petri net in which the operations A, B , and C are synchronized the same way as
in the above program. In the net, the operations must occur as transitions.

Exercise Sema.2

Recall the problem and solution to Exercise Petri.2.

Now, the four operations/actions are to be executed by four sequential processes PA, PB ,
PC , and PD respectively. Write a program using semaphores to synchronize the four
processes such that the operations A to D are synchronized as in the Petri-net. (The
choice of which operation to execute, B or C , need not be fair, and can be left to the
semaphore mechanism.)

Exercise Sema.3

The meeting problem (barrier problem, lock-step problem) for two processes has been
solved in Section 3.6 in [Basic] using general semaphores.

(a) Show that this solutions does not work with binary semaphores.

(b) Solve the meeting problem for two processes using binary semaphores only. Use the
semaphore invariant to show that binary semaphores are sufficient.

Exercise Sema.4

Solve the meeting problem for three processes using semaphores.

Exercise Sema.5

Write a piece of code SYNCi that solves the meeting/barrier problem for an arbitrary
number of processes N using semaphores only.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 7

Monitors

In all the below exercises you should assume Signal-and-Continue (SC) semantics of condition
queues unless otherwise stated.

Exercise Mon.1

Write a monitor with two procedures SYNCA and SYNCB to be used by two processes PA

and PB respectively. The monitor should synchronize the two processes, i.e. make them
meet/wait for each other.

Exercise Mon.2

Now, the above problem is generalized to making N processes meet before any of them can
proceed (also known as the barrier problem). Write a monitor with a single procecedure
SYNC to be used by all the processes for the synchronization.

Exercise Mon.3

The general meeting problem from the preceeding exercise is now to be modified such that
the N processes not only meet but also “share the loot”. I.e. each process comes with a
number (given as a parameter to SYNC ) and get the mean value of all numbers back (as
a return value). Write a monitor that solves this problem. Beware that due to the SC
semantics, processes may call the monitor again before all have got their share of the loot.

Hint: Use an extra ”pre-queue” where processes may be delayed while the sharing takes
place.

Exercise Mon.4

Write a monitor with two operations sleep and wakeup that implements the synchronization
mechanism of Andrews Ex. 4.6.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 8

CSP

From Concurrent Programming Exam, June 1994

PROBLEM 3 (approx. 15 %)

Three CSP processes P1,P2, and P3 perform three operations A, B , and C respectively. The
operations are to be synchronized which is accomplished by communication among the processes:

process P1 =
repeat

P2 ! ();
A

forever

process P2 =
repeat

if P1 ? () → skip

[] P3 ? () → skip

fi;
B

forever

process P3 =
repeat

P2 ! ();
C

forever

Question 3.1:

Draw a Petri-net in which the three operations A, B , and C are synchronized the same way
as in the CSP program. In the net, the operations should be represented by transitions.

The operations are now to be executed by three sequential processes PA, PB , and PC :

process PA =
repeat

A
forever

process PB =
repeat

B
forever

process PC =
repeat

C
forever

Question 3.2:

Show how semaphores can be used to synchronize the three processes such that A, B , and
C are synchronized in the same way as in the CSP program.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 9

Deadlocks

From Concurrent Programming Exam, December 1998

PROBLEM 4 (approx. 10 %)

In a system there is one instance of a resource type A, two instances of a type B , and three
instances of a type C . The resources are used by four processes P1, P2, P3, and P4. The
processes have declared their maximal resource demands as shown below. Furthermore, it is
shown which resources have been allocated and which are requested at a certain moment.

Max
A B C

P1 1 2 0
P2 0 1 1
P3 1 0 3
P4 0 2 2

Allocation Request
A B C A B C

P1 1 0 0 0 0 0
P2 0 1 0 0 0 0
P3 0 0 1 0 0 1
P4 0 1 0 0 0 1

Question 4.1:

Draw a resource allocation graph corresponding to this situation. In the graph, the ex-
pected, not yet requested, resource needs should be indicated by dashed arrows.

Question 4.2:

(a) Show that the situation is safe.

(b) Determine whether P4 can be granted the requested C -instance according to the banker’s
algorithm.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 10

FURTHER SELECTED EXAM PROBLEMS

From Concurrent Programming Exam, December 1998

PROBLEM 1 (approx. 25 %)

The below implementation of a critical region for two processes, P1 and P1, utilizes a machine
instruction that indivisibly sets an integer variable to the value of another variable plus one. In
the program this instruction is denoted by statements of the form <X := Y +1 >. The variables
C1 and C2 are not changed other places than shown.

var C1,C2 : integer ;

C1 := 0; C2 := 0;

process P1;
repeat

nc1: non-critical section1;
a1: <C1 := C2 + 1 >;
w1: while C1 6= 1 do ;
cs1: critical section1;
d1: C1 := 0;
e1: if C2 > 1 then f1: C2 := 1

forever;

process P2;
repeat

nc2: non-critical section2;
a2: <C2 := C1 + 1 >;
w2: while C2 6= 1 do ;
cs2: critical section2;
d2: C2 := 0;
e2: if C1 > 1 then f2: C1 := 1

forever;

The following predicates are invariants of the program:

Gi
∆
= Ci ≥ 0 i = 1, 2

Hi
∆
= Ci > 0 ⇔ in wi ..di i = 1, 2

Question 1.1:

(a) State with a brief argument which value C1 has when P1 is in cs1.

(b) Omitted

(c) Define a predicate I of the form

I
∆
= C1 = C2 ⇒ . . .

expressing what holds about C1 and C2, when they have the same value.

Argue (informally) that I is an invariant of the program.

(d) Show, using I , that mutual exclusion is ensured in the given program.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 11

You are now given the following proof lattice for the program:

at a1

at w1

2in w1

2in w1 ∧ 2C1 > 0

2in w2

2C1 = 2 ∧ 2C2 = 2

2in nc2at e2

at f2

C1 = 1

2C1 = 1

after w1

false

at cs1

?

�����

?1.

��������

?

HHHHHHHHj

HHHHHHHj

6.

���������

?
2.

?

@
@R3.

�
�	 4.

?5.

?7.

?8.

HHHHHHHj

HHHHHH

����

2in w1 ∧ 2C1 > 0

Further, you are informed that also the following predicates are invariants of the program:

Ki
∆
= Ci > 1 ⇒ Ci = 2 ∧ in wi ∧ in wj ..ej i = 1, 2, j 6= i

Question 1.2:

Argue for the validity of the steps 1. to 8. indicated in the proof lattice.

Question 1.3:

It is now assumed that the statements e1 and e2 (including f1 and f2) are removed from the
given program:

(a) Argue briefly that mutual exclusion is still ensured.

(b) Show that the implementation of the critical region is no longer resolute.

[Resolution: If both processes wants to enter the region at the same time, one of them will
succeed.]



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 12

From Concurrent Systems Exam, December 2001

PROBLEM 1 (approx. 20 %)

Consider the concurrent program:

var x , y : integer := 0;

co

repeat a1: 〈 x < 2 ∧ y = 0 → x := x + 1 〉 forever

‖
repeat a2: 〈 y := x ; x := 0 〉 forever

‖
repeat a3: 〈 x = 1 → y := 2 〉 forever

oc

Question 1.1:

(a) Prove inductively that I
∆
= (y = 0 ∨ x 6= y) is an invariant of the program.

(b) Draw the (reachable part of) the transition graph for the program. Since control remains
at the a-actions, only the (x , y) part of the state needs to be shown.

(c) Determine from the transition graph, whether (x = 0 ∨ y = 0) is an invariant of the
program.

Question 1.2:

(a) Argue that 23y = 0 holds for the program under the assumption of weak fairness.

(b) Determine whether 23y = 2 holds for the program under the assumption of strong fair-
ness.

Question 1.3:

Assume that the program is modified by replacing the action a1 by the refinement:

b1: 〈await x < 2 〉; c1: 〈await y = 0 〉; d1: 〈 x := x + 1 〉

(a) Show that I is not an invariant of the modified program.

(b) We would like to prove that x ≤ 2 is an invariant of the modified program.

State a predicate H that (i) implies x ≤ 2, (ii) holds initially, and (iii) is inductive for the
modified program.

[For H to be inductive, it must be strong enough to be preserved by all atomic actions,
but you need not demonstrate this.]



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 13

From Concurrent Systems Exam, December 2002

PROBLEM 1 (approx. 20 %)

The below implementation of a critical region for two processes, P1 and P2, utilizes a machine
instruction that indivisibly tests a boolean variable and, if false, sets an integer variable to
a constant value. In the program this instruction is denoted by statements of the form 〈 if
¬B then X := k 〉. The variables C1, C2 and Turn are not changed other places than shown.

var C1,C2 : boolean := false;
Turn : integer := 1;

process P1;
repeat

nc1: non-critical section1;
a1: C1 := true;
b1: 〈 if ¬C2 then Turn := 1 〉;
w1: await Turn = 1;
cs1: critical section1;
e1: C1 := false;
f1: Turn := 2

forever;

process P2;
repeat

nc2: non-critical section2;
a2: C2 := true;
b2: 〈 if ¬C1 then Turn := 2 〉;
w2: await Turn = 2;
cs2: critical section2;
e2: C2 := false;
f2: Turn := 1

forever;

Question 1.1:

(a) Draw the part of the transition diagram for P1 that represents b1.

(b) Show that mutual exclusion would not be ensured by the program if the statements b1 and
b2 were executed in the usual, non-atomic way.

(c) Define predicates Ii of the form

Ii
∆
= in csi ⇒ . . . i = 1, 2

that express what can be said about Turn when Pi is in its critical section.

Argue that I1 and I2 are invariants of the program.

(d) Show, using I1 and I2, that mutual exclusion is ensured in the above program.

You are informed that H1

∆
= at w1 ∧ in nc2 ⇒ Turn = 1 is an invariant of the program.

Question 1.2:

(a) Express as a formula of temporal logic, the property of fairness (eventual entry) for the
critical region.

(b) Explain why the algorithm is deadlock-free.

(c) Argue that the algorithm ensures fairness for the critical region.

Hint: Show that one of the processes, say P1, cannot remain forever at w1. Fair process
execution (weak fairness) is assumed.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 14

From Concurrent Programming Exam, June 1991

PROBLEM 2 (approx. 25 %)

In a system a number of operations C1,C2, . . . ,Cn , (n ≥ 1) must be executed concurrently.
However, before Ci can be executed, a private initilization operation Bi as well as a common
start operation A must be executed. Thus, the operations are to be executed the following way:

(∗) Initially, A as well as B1,B2, . . . ,Bn are executed concurrently. As soon as A and Bi

have finished, Ci can be executed (i : 1..n). When all the operations C1,C2, . . . ,Cn have
finished, the execution starts all over again.

Question 2.1:

For a system with n = 2, draw a Petri-net in which the five operations A, B1, B2, C1, and
C2 are synchronized as described by (∗). In the net, the operations should be represented
by transitions.

The operations are to be executed by a sequential process P plus n sequential processes
Q1,Q2, . . . ,Qn . The form of these processes are:

process P =
repeat

A
forever;

process Q [i : 1..n] =
repeat

Bi ;
Ci

forever;

Question 2.2:

Show how to synchronize these processes using semaphores such that the operations A,
Bi , and Ci (i : 1..n) become synchronized as described by (∗).

The processes P and Q1,Q2, . . . ,Qn are now to be sychronized using a monitor Synch instead.
The monitor has three parameterless operations Done, Start , End to be called by the processes
as shown below:

monitor Synch;
procedure Done();
procedure Start();
procedure End();

end;

process P =
repeat

A
Synch.Done()

forever;

process Q [i : 1..n] =
repeat

Bi ;
Synch.Start();
Ci ;
Synch.End()

forever;

Question 2.3:

Write the monitor Synch such that the operations A, Bi , and Ci (i : 1..n) become syn-
chronized as described by (∗).



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 15

From Concurrent Systems Exam, December 2002

PROBLEM 3 (approx. 15 %)

Below, a monitor implementation of a synchronization mechanism Gate is shown. The gate may
be opened or closed by an operation Set . Processes call Pass() to pass the gate and have to wait
if the gate is closed. A special operation Go(k) lets up to k of the currently waiting processes
pass through the gate.

monitor Gate

var open : boolean := false;
Queue : condition;

procedure Pass() {
if ¬open then wait(Queue);

}

procedure Set(b : boolean) {
open := b;
if open then signal all(Queue);

}

procedure Go(k : integer) {
for j in 1..k do signal(Queue);

}

end

Question 3.1:

(a) Define a predicate I expressing that calls of Pass() do not wait unnecessarily.

(b) Argue that I is an invariant of the monitor.

(c) Describe the effect of Go(k) if there are less than k calls of Pass() currently waiting.

Question 3.2:

The functioning of the given monitor Gate is now to be implemented by a module with
the following specification:

module Gate
op Pass();
op Set(boolean);
op Go(integer);

end

Write a server process for the module Gate that services the operations by rendezvous in
such a way that it functions like the given monitor Gate as seen from the calling processes.



02152 Concurrent Systems Fall 2008 Auxiliary Exercises Page 16

From Concurrent Systems Exam, December 2003 (2-hours)

PROBLEM 3 (approx. 20 %)

Let N be a positive integer. The server-based module Batch given below implements a synchro-
nization mechanism that “collects” a batch of N items provided by calls of put() which may then
be “removed” by a call of unload().

module Batch
op put();
op unload();

body

process Control ;
var count : integer := 0;
repeat

while count < N do

in put() → count := count + 1 ni;
in unload() → count := 0 ni;

forever;

end Batch;

Question 3.1:

Assume N = 3. Suppose that, concurrently, unload() is called by two processes and put()
is called by five processes. Assuming no further calls, describe the overall effect of these
seven calls.

Question 3.2:

Now, the module Batch is to be replaced with a monitor which provides the same operations
and behaves in the same way. Write such a monitor.


