Outro

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

May 1, 2025

1/32

Overview

Evaluation
Who is Alan Turing?
Lipsi, a simple processor

Show the vending machine next week
Report hand-in at DTU Learn (22 May)
> Please check now if visible

» We have a guest lecture next week

vvyvyyVvyy

2/32

Evaluation

» In general, it looks like most enjoyed DE2 :-)
» Some wrote that the lab was too easy
» | make it harder every year, maybe not fast enough ;-)

» We can take a look next week
» You can still provide feedback

3/32

FSMD

> A finite-state machine with a datapath

» Can compute

» Your vending machine is an FSMD

» Can we use this to build a general-purpose processor?

4/32

What is a General Processor?

| 2

vy

vVvYyyvyy

A computing machine that can compute all computable
problems

What is computable?

Mr. Turing thought about this before computers where built
(1936)

The Turing machine can compute all computable problems
How useful is this?

What is NOT computable?

Assumption is infinite resources (memory)

But even with finite amount of memory it is a VERY useful
classification

5/32

https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Turing_machine

A Practical Turing-Complete Machine

» Compute with some operations

» Control 1: an FSM to steer the datapath

» Control 2: instructions to steer the FSM

» Storage: memory for the infinite/large storage

6/32

Can We Build Such a Processor?

» Our Chisel and digital design knowledge should be enough
> Let’s start with a simple one

» An FSMD plus memory

> As itis small, we name it after a small island: Lipsi

7/32

Lipsi

» The paper: Lipsi: Probably the Smallest Processor in the
World

» Code: The Chisel Code

» A simple Accumulator machine
» Small enough to fit into a Tiny Tapeout tile

» But | had to reduce the memory a LOT
» Got the board a few weeks ago and it is working!

8/32

https://www.jopdesign.com/doc/lipsi.pdf
https://www.jopdesign.com/doc/lipsi.pdf
https://github.com/schoeberl/lipsi
https://github.com/schoeberl/tt06-lipsi

Lipsi Datapath

| rd

" |addr

wr
addr

wr
data

rd
data

Memory

ALU
A\

9/32

Datapath Elemenets

» An arithmetic-logic unit (ALU)

» An accumulator: register A

» Memory for instructions and data
» a program counter (PC)

10/32

Commanding the FSM

» We need so-called instructions

» They drive the FSM

» To computer (e.g., +, -, or): ALU operations

» To load from and store into memory

» To (conditionally) branch (implement if/else and loops)

11/32

Lipsi Instruction Set

Encoding Instruction Meaning Operation
0fff rrrr frx ALU register A=Afmr]
1000 rrrr st rx store A into register m[r] = A

1001 rrrr brl rx branch and link m[r] = PC,PC=A
1010 rrrr Idind (rx) load indirect A = m[m(r]]
1011 rrrr stind (rx) store indirect m[m[r]] = A
1100 -fff nnnn nnnn fin ALU immediate A=Afn

1101 --00 aaaa aaaa br branch PC=a

1101 --10 aaaa aaaa brz branch if A is zero PC=a

1101 --11 aaaa aaaa brnz branch if Aisnotzero PC=a

1110 --ff sh ALU shift A = shift(A)
1111 aaaa io input and output I0O=A,A=10
1111 1111 exit exit for the tester PC =PC

12/32

ALU Operations

Encoding

Name Operation

000
001
010
011
100
101
110
111

add
sub
adc
sbb
and
or

xor
Id

A=A+op
A=A—-op
A=A+op+c
A=A-op-c
A=AAo0Op
A=AV op
A=A®op
A=o0p

13/32

The ALU

val add
1d

sub

adc :: sbb

Nil = Enum(8)

switch (funcReg) {

is(Cadd)
is(sub)
is(adc)
is (sbb)
is(Cand)

{

e e

res
res
res
res
res

is(or) { res
is(xor) { res
is(ld) { res

:= accuReg
:= accuReg
:= accuReg
:= accuReg
:= accuReg

:= accuReg

:= accuReg

i= op 1}

+ op
- op
+ op
- op
& op

| op }

~ op

and :: or :: Xxor

}
}
} // TODO: adc

} // TODO: sbb
}

}

14/32

Some Defaults

wrEna := false.B

wrAddr := rdData

rdAddr := Cat(0.U(1.W), nextPC)
updPC := true.B

nextPC := pcReg + 1.U
enaAccuReg := false.B

enaPcReg := false.B

enaloReg := false.B

15/32

Conditions for Branches

val accuZero = accuReg === 0.U

val doBranch = (rdData(l, 0) === 0.U) ||
((rdbata(l, 0) === 2.U) && accuZero) ||
((rdData(l, 0) === 3.U) && !accuZero)

16/32

The FSM States and Register

val fetch :: execute :: stind :: ldindl ::
ldind2 :: exit :: Nil = Enum(6)
val stateReg = RegInit(fetch)

17/32

A Large State Machine

switch(stateReg) {
is(fetch) {

stateReg := execute
funcReg := rdData(6, 4)
// ALU register
when(rdData(7) === 0.U) {
updPC := false.B
funcReg := rdData(6, 4)
enaAccuReg := true.B
rdAddr := Cat(0x10.U, rdData(3, 0))
}
// st rx, is just a single cycle
when(rdData(7, 4) === 0x8.U) {
wrAddr := Cat(0.U, rdData(3, 0))
wrEna := true.B
stateReg := fetch
b

18/32

Memory

» Code memory for instructions

» Data memory for data

» Merge those two

» Instruction memory filled with a program

» That program is an assembler written in Scala

19/32

Code and Data Memory

val program =

VecInit(util.Assembler.getProgram(prog) .map(_.U))

val instr = program(rdAddrReg(7,

val mem = Mem(256, UInt(8.W))

val data = mem(rdAddrReg (7,
when(io.wrEna) {

mem(io.wrAddr) := io.wrData

}

// Output MUX

io.rdData := Mux(rdAddrReg(8),

data,

0))

instr)

20/32

An Assembly Program Example

» Digital hardware and processors only understand 0 and 1
» But, we do not want to program in Os and 1s
> We write in assembly language

1di 0x12

st rl

1di 0x34

st r2

1di ©

add ri1

add r2

now it is 0x46

21/32

https://en.wikipedia.org/wiki/Assembly_language

Assembling Instructions

for (line <- source.getLines()) {
if (!pass2) println(line)
line.trim.split(" ")

val tokens

val Pattern =

val instr
ll#ll
case Pattern(l) =>

(1l.substring (0,

case

case
case
case
case
case
case

This is done at hardware generation

"add"
"sub"
"adc"
"sbb"
"and"

or

"

"C.F)".r

tokens (0) match {

=> 0x00
=> 0x10
=> 0x20
=> 0x30
=> 0x40

=> // comment

if (!pass2) symbols +=

1

+

+
+
+
+

.length - 1) -> pc)

regNumber (tokens (1))
regNumber (tokens (1))
regNumber (tokens (1))
regNumber (tokens (1))
regNumber (tokens (1))

=> 0x50 + regNumber (tokens(1l))

22/32

Co-simulation for Testing

Write an implementation of Lipsi in Scala

This is an instruction set simulator, not hardware

This is your golden model

Run programs on the simulator and in the Chisel hardware
Compare the results (the value in the accumulator)

vvyyvyyvyy

23/32

Processor Summary

This is a tiny processor as an example
Chisel is productive: this was all done in 14 hours!
Kind of useful for small systems

Is this the way a general processor is built?

Not today, we use something called pipelining
You can learn this in:
» 02155: Computer Architecture and Engineering

>

>

>

> You could implement your vending machine on it
>

>

>

24/32

02155: Computer Architecture and Engineering

vVvyVvyVvVvyyypy

Course description

Learn how a real-world processor work

Learn the language of the machine (instructions)
Virtual memory and caches

We use RISC-V, the free instruction set
Project: write a simulator for the RISC-V
» In any language, may be in Chisel
» May even be a full implementation in an FPGA
You can also do a complete RISC-V in an FPGA ina 3
weeks course

25/32

http://www2.imm.dtu.dk/courses/02155/

Future with Digital Design Education

» There are many companies in DK doing chip design
» See DTU Chip Day

» FPGAs are available in the cloud
> To speedup computing
» You can rent them from Amazon

» FPGAs are also used in embedded systems

» Digital design is only part of a computer engineering
education

26/32

https://chipday.dk/

Computer Engineering Education at DTU

» On the interaction between hardware and software

> Very well payed jobs :-)

» DTU has now a clear path to a computer engineering
education

» We started with the Computer Engineering (CE) BSc in fall
2023

» With a Bsc. in EE: specialization in Indlejrede systemer og
programmering

» 02155 Computer Architecture and Engineering

» 02105 Algoritmer og datastrukturer
» Continue as MSc. in Computer Science and Engineering
» Specialization in

> Digital Systems

» Embedded and Distributed Systems

27/32

Chip Design within the CE and EE Bachelor

» Select some of the following courses
02113 Digital Systems Design Project, 3 week (2nd)
02155 Computer Architecture and Engineering (3rd)
02114 Design of a RISC-V Microprocessor, 3 week (3rd)
02201 Agile Hardware Design (5th)
02118 Introduction into Chip Design (6th)
: add the software side to your education
02105 Algorithms and Data Structures 1
02161 Software Engineering 1
02159 Operating Systems
02157 Functional Programming
02110 Algorithms and Data Structures 2

vVVyYVYyYVYY

> E

m

vVvVvyyVvyy

28/32

Introduction to Chip Design

v

Regular start: spring 2026

v

Seminar like initial iteration: spring 2025

» Topics:
» Basics: transistors, wire, power, time, memories
» Partitioning, floor planning, and individual hardening
» Multiclock designs and clock domain crossing
» A multicore SoC example (e.g., RISC-V processor + 10)
» Network-on-Chip to connect the components

» Use of open-source tools (OpenLane2)

» Tape out with Tiny Tapeout (planned)
» Each student group will receive a chip + board

» Have a (virtual) tape out at the end of the semester

» With Google/Skywater
» Or Edu4Chip 22 nm GF

29/32

Digital Design within a CSE or EE Master

» Select some of the following courses

>

VVVVYVYYVYY

02201 Agile Hardware Design

02203 Design of Digital Systems

02211 Advanced Computer Architecture
02205 VLSI Design

(02217 Design of Arithmetic Processors)
(02204 Design of Asynchronous Circuits)
02209 Test of Digital Systems

more to come...

30/32

Reading Recommendation

» Chip War

31/32

https://www.amazon.com/Chip-War-Worlds-Critical-Technology/dp/1982172002

Summary

» You now know enough digital design to build any digital
system

» You may get better on it with practice

» When you understand the principles, you can easily learn
SystemVerilog or VHDL in days

» Chisel may be the future for hardware design

» You might apply for a job in Silicon Valley with your Chisel
knowledge ;-)

» Hope to see some of you in the upcoming courses

32/32

