
Outro

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

May 1, 2025

1 / 32

Overview

▶ Evaluation
▶ Who is Alan Turing?
▶ Lipsi, a simple processor
▶ Show the vending machine next week
▶ Report hand-in at DTU Learn (22 May)

▶ Please check now if visible
▶ We have a guest lecture next week

2 / 32

Evaluation

▶ In general, it looks like most enjoyed DE2 :-)
▶ Some wrote that the lab was too easy

▶ I make it harder every year, maybe not fast enough ;-)
▶ We can take a look next week
▶ You can still provide feedback

3 / 32

FSMD

▶ A finite-state machine with a datapath
▶ Can compute
▶ Your vending machine is an FSMD
▶ Can we use this to build a general-purpose processor?

4 / 32

What is a General Processor?

▶ A computing machine that can compute all computable
problems

▶ What is computable?
▶ Mr. Turing thought about this before computers where built

(1936)
▶ The Turing machine can compute all computable problems
▶ How useful is this?
▶ What is NOT computable?
▶ Assumption is infinite resources (memory)
▶ But even with finite amount of memory it is a VERY useful

classification

5 / 32

https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Turing_machine

A Practical Turing-Complete Machine

▶ Compute with some operations
▶ Control 1: an FSM to steer the datapath
▶ Control 2: instructions to steer the FSM
▶ Storage: memory for the infinite/large storage

6 / 32

Can We Build Such a Processor?

▶ Our Chisel and digital design knowledge should be enough
▶ Let’s start with a simple one
▶ An FSMD plus memory
▶ As it is small, we name it after a small island: Lipsi

7 / 32

Lipsi

▶ The paper: Lipsi: Probably the Smallest Processor in the
World

▶ Code: The Chisel Code
▶ A simple Accumulator machine
▶ Small enough to fit into a Tiny Tapeout tile

▶ But I had to reduce the memory a LOT
▶ Got the board a few weeks ago and it is working!

8 / 32

https://www.jopdesign.com/doc/lipsi.pdf
https://www.jopdesign.com/doc/lipsi.pdf
https://github.com/schoeberl/lipsi
https://github.com/schoeberl/tt06-lipsi

Lipsi Datapath

rd
addr

PC
+

 ALU A

1

wr
data

wr
addr

Memory

0

rd
data

9 / 32

Datapath Elemenets

▶ An arithmetic-logic unit (ALU)
▶ An accumulator: register A
▶ Memory for instructions and data
▶ a program counter (PC)

10 / 32

Commanding the FSM

▶ We need so-called instructions
▶ They drive the FSM
▶ To computer (e.g., +, -, or): ALU operations
▶ To load from and store into memory
▶ To (conditionally) branch (implement if/else and loops)

11 / 32

Lipsi Instruction Set

Encoding Instruction Meaning Operation

0fff rrrr f rx ALU register A = A f m[r]
1000 rrrr st rx store A into register m[r] = A
1001 rrrr brl rx branch and link m[r] = PC, PC = A
1010 rrrr ldind (rx) load indirect A = m[m[r]]
1011 rrrr stind (rx) store indirect m[m[r]] = A
1100 -fff nnnn nnnn fi n ALU immediate A = A f n
1101 --00 aaaa aaaa br branch PC = a
1101 --10 aaaa aaaa brz branch if A is zero PC = a
1101 --11 aaaa aaaa brnz branch if A is not zero PC = a
1110 --ff sh ALU shift A = shift(A)
1111 aaaa io input and output IO = A, A = IO
1111 1111 exit exit for the tester PC = PC

12 / 32

ALU Operations

Encoding Name Operation

000 add A = A + op
001 sub A = A − op
010 adc A = A + op + c
011 sbb A = A − op − c
100 and A = A ∧ op
101 or A = A ∨ op
110 xor A = A ⊕ op
111 ld A = op

13 / 32

The ALU

val add :: sub :: adc :: sbb :: and :: or :: xor

:: ld :: Nil = Enum(8)

switch(funcReg) {

is(add) { res := accuReg + op }

is(sub) { res := accuReg - op }

is(adc) { res := accuReg + op } // TODO: adc

is(sbb) { res := accuReg - op } // TODO: sbb

is(and) { res := accuReg & op }

is(or) { res := accuReg | op }

is(xor) { res := accuReg ˆ op }

is(ld) { res := op }

}

14 / 32

Some Defaults

wrEna := false.B

wrAddr := rdData

rdAddr := Cat(0.U(1.W), nextPC)

updPC := true.B

nextPC := pcReg + 1.U

enaAccuReg := false.B

enaPcReg := false.B

enaIoReg := false.B

15 / 32

Conditions for Branches

val accuZero = accuReg === 0.U

val doBranch = (rdData(1, 0) === 0.U) ||

((rdData(1, 0) === 2.U) && accuZero) ||

((rdData(1, 0) === 3.U) && !accuZero)

16 / 32

The FSM States and Register

val fetch :: execute :: stind :: ldind1 ::

ldind2 :: exit :: Nil = Enum(6)

val stateReg = RegInit(fetch)

17 / 32

A Large State Machine

switch(stateReg) {

is(fetch) {

stateReg := execute

funcReg := rdData(6, 4)

// ALU register

when(rdData(7) === 0.U) {

updPC := false.B

funcReg := rdData(6, 4)

enaAccuReg := true.B

rdAddr := Cat(0x10.U, rdData(3, 0))

}

// st rx, is just a single cycle

when(rdData(7, 4) === 0x8.U) {

wrAddr := Cat(0.U, rdData(3, 0))

wrEna := true.B

stateReg := fetch

}

...

18 / 32

Memory

▶ Code memory for instructions
▶ Data memory for data
▶ Merge those two
▶ Instruction memory filled with a program
▶ That program is an assembler written in Scala

19 / 32

Code and Data Memory

val program =

VecInit(util.Assembler.getProgram(prog).map(_.U))

val instr = program(rdAddrReg(7, 0))

val mem = Mem(256, UInt(8.W))

val data = mem(rdAddrReg(7, 0))

when(io.wrEna) {

mem(io.wrAddr) := io.wrData

}

// Output MUX

io.rdData := Mux(rdAddrReg(8), data, instr)

20 / 32

An Assembly Program Example

▶ Digital hardware and processors only understand 0 and 1
▶ But, we do not want to program in 0s and 1s
▶ We write in assembly language

ldi 0x12

st r1

ldi 0x34

st r2

ldi 0

add r1

add r2

now it is 0x46

21 / 32

https://en.wikipedia.org/wiki/Assembly_language

Assembling Instructions

for (line <- source.getLines()) {

if (!pass2) println(line)

val tokens = line.trim.split(" ")

val Pattern = "(.*:)".r

val instr = tokens(0) match {

case "#" => // comment

case Pattern(l) => if (!pass2) symbols +=

(l.substring(0, l.length - 1) -> pc)

case "add" => 0x00 + regNumber(tokens(1))

case "sub" => 0x10 + regNumber(tokens(1))

case "adc" => 0x20 + regNumber(tokens(1))

case "sbb" => 0x30 + regNumber(tokens(1))

case "and" => 0x40 + regNumber(tokens(1))

case "or" => 0x50 + regNumber(tokens(1))

This is done at hardware generation

22 / 32

Co-simulation for Testing

▶ Write an implementation of Lipsi in Scala
▶ This is an instruction set simulator, not hardware
▶ This is your golden model
▶ Run programs on the simulator and in the Chisel hardware
▶ Compare the results (the value in the accumulator)

23 / 32

Processor Summary

▶ This is a tiny processor as an example
▶ Chisel is productive: this was all done in 14 hours!
▶ Kind of useful for small systems
▶ You could implement your vending machine on it
▶ Is this the way a general processor is built?
▶ Not today, we use something called pipelining
▶ You can learn this in:

▶ 02155: Computer Architecture and Engineering

24 / 32

02155: Computer Architecture and Engineering

▶ Course description
▶ Learn how a real-world processor work
▶ Learn the language of the machine (instructions)
▶ Virtual memory and caches
▶ We use RISC-V, the free instruction set
▶ Project: write a simulator for the RISC-V

▶ In any language, may be in Chisel
▶ May even be a full implementation in an FPGA

▶ You can also do a complete RISC-V in an FPGA in a 3
weeks course

25 / 32

http://www2.imm.dtu.dk/courses/02155/

Future with Digital Design Education

▶ There are many companies in DK doing chip design
▶ See DTU Chip Day
▶ FPGAs are available in the cloud

▶ To speedup computing
▶ You can rent them from Amazon

▶ FPGAs are also used in embedded systems
▶ Digital design is only part of a computer engineering

education

26 / 32

https://chipday.dk/

Computer Engineering Education at DTU

▶ On the interaction between hardware and software
▶ Very well payed jobs :-)
▶ DTU has now a clear path to a computer engineering

education
▶ We started with the Computer Engineering (CE) BSc in fall

2023
▶ With a Bsc. in EE: specialization in Indlejrede systemer og

programmering
▶ 02155 Computer Architecture and Engineering
▶ 02105 Algoritmer og datastrukturer

▶ Continue as MSc. in Computer Science and Engineering
▶ Specialization in

▶ Digital Systems
▶ Embedded and Distributed Systems

27 / 32

Chip Design within the CE and EE Bachelor

▶ Select some of the following courses
▶ 02113 Digital Systems Design Project, 3 week (2nd)
▶ 02155 Computer Architecture and Engineering (3rd)
▶ 02114 Design of a RISC-V Microprocessor, 3 week (3rd)
▶ 02201 Agile Hardware Design (5th)
▶ 02118 Introduction into Chip Design (6th)

▶ EE: add the software side to your education
▶ 02105 Algorithms and Data Structures 1
▶ 02161 Software Engineering 1
▶ 02159 Operating Systems
▶ 02157 Functional Programming
▶ 02110 Algorithms and Data Structures 2

28 / 32

Introduction to Chip Design

▶ Regular start: spring 2026
▶ Seminar like initial iteration: spring 2025
▶ Topics:

▶ Basics: transistors, wire, power, time, memories
▶ Partitioning, floor planning, and individual hardening
▶ Multiclock designs and clock domain crossing
▶ A multicore SoC example (e.g., RISC-V processor + IO)
▶ Network-on-Chip to connect the components

▶ Use of open-source tools (OpenLane2)
▶ Tape out with Tiny Tapeout (planned)

▶ Each student group will receive a chip + board
▶ Have a (virtual) tape out at the end of the semester

▶ With Google/Skywater
▶ Or Edu4Chip 22 nm GF

29 / 32

Digital Design within a CSE or EE Master

▶ Select some of the following courses
▶ 02201 Agile Hardware Design
▶ 02203 Design of Digital Systems
▶ 02211 Advanced Computer Architecture
▶ 02205 VLSI Design
▶ (02217 Design of Arithmetic Processors)
▶ (02204 Design of Asynchronous Circuits)
▶ 02209 Test of Digital Systems
▶ more to come...

30 / 32

Reading Recommendation

▶ Chip War

31 / 32

https://www.amazon.com/Chip-War-Worlds-Critical-Technology/dp/1982172002

Summary

▶ You now know enough digital design to build any digital
system

▶ You may get better on it with practice
▶ When you understand the principles, you can easily learn

SystemVerilog or VHDL in days
▶ Chisel may be the future for hardware design
▶ You might apply for a job in Silicon Valley with your Chisel

knowledge ;-)
▶ Hope to see some of you in the upcoming courses

32 / 32

