
Interfacing and Memory

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

April 10, 2025

1 / 42



Overview

▶ Repeat FSMD (for the vending machine)
▶ I have (earlier) seen some intermix of FSM and datapath
▶ Works only for small designs

▶ GoL: a highly parallel example (including co-simulation)
▶ Interfaces
▶ Memory (intern and extern)
▶ Busses
▶ Lab is the vending machine

2 / 42



I have seen similar code (not this year)

when(io.coin2) {

sum := sum + 2.U

} .elsewhen(io.coin5) {

sum := sum + 5.U

}

▶ This may work for tiny projects
▶ This style does not scale for larger designs
▶ I recommend using an FSM + datapath

▶ Split responsibility
▶ Can be individually tested
▶ Can be developed in parallel

3 / 42



Usage of an FSMD

▶ Of course for your VM
▶ The VM is a simple processor
▶ But not Turing complete
▶ Can only process coins of 2 and 5

▶ Have the FSM and the data path in two Modules
▶ An FSMD can be used to build a processor
▶ Fine for simple processors
▶ E.g., Lipsi
▶ Pipelined processor topic of

▶ Computer Architecture Engineering (02155)

4 / 42

https://github.com/schoeberl/lipsi


Test the FSMD for the VM

▶ This is the main part your vending machine
▶ Can be design and tested just with Chisel testers (no

FPGA board needed)
▶ See the given tester

▶ Sets the price to 7
▶ Adds two coins (2 and 5)
▶ Presses the buy button

▶ Extend the test along the development
▶ Remember test driven development?
▶ Maybe test developer and FSMD developer are not always

the same person

5 / 42



Testing Your Vending Machine

▶ Write (unit) tests for each component/module
▶ E.g., one for the data path, one for the state machine
▶ Then one (integration) test for the top-level

component/module
▶ Maybe do some extreme programming (XP)

▶ Write the test first
▶ Then the code of the component
▶ The test can serve as a specification
▶ We can do agile hardware development

6 / 42

https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Agile_software_development


Game of Live

▶ Conway’s Game of Life
▶ Any live cell with two or three live neighbors survives.
▶ Any dead cell with three live neighbors becomes a live cell.
▶ All other live cells die in the next generation. Similarly, all

other dead cells stay dead.

7 / 42

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life


Game of Live

▶ You did an implementation in Java
▶ The problem is highly parallel
▶ I will show you a Chisel (and Java) implementation
▶ FPGA version is extremely fast compared to the Java

implementation
▶ It contains co-simulation
▶ https://github.com/schoeberl/game-of-live

8 / 42

https://github.com/schoeberl/game-of-live


Performance Comparison

Execution time (us) FPGA Speedup
World Cells Mac Rasperry FPGA Mac Rasperry

10x10 100 0.10 1.783 0.0040 25 445
20x20 400 0.33 5.137 0.0040 82 1284
30x30 900 0.70 9.965 0.0041 170 2430
40x40 1600 1.21 17.212 0.0040 302 4302
50x50 2500 1.81 25.204 0.0044 411 5728
60x60 3600 2.76 37.822 0.0045 613 8404
70x70 4900 3.54 57.665 0.0040 884 14416
80x80 6400 4.81 64.396 0.0047 1023 13701
90x90 8100 6.50 81.309 0.0045 1444 18068

100x100 10000 7.51 109.964 0.0048 1564 22909

9 / 42



Memory

▶ Registers are storage elements == memory
▶ Just use a Reg of a Vec
▶ This is 1 KiB of memory

val memoryReg = Reg(Vec(1024, UInt(8.W)))

// writing into memory

memoryReg(wrAddr) := wrData

// reading from the memory

val rdData = memoryReg(rdAddr)

▶ Simple, right?
▶ But is this a good solution?

10 / 42



A Flip-Flop

▶ Remember the circuit of a register (flip-flop)?
▶ Two latches: master and slave
▶ One (enable) latch can be built with 4 NAND gates
▶ a NAND gate needs 4 transistors, an inverter 2 transistors
▶ A flip-flop needs 36 transistors (for a single bit)
▶ Can we do better?

11 / 42

https://en.wikipedia.org/wiki/Flip-flop_(electronics)#Master%E2%80%93slave_edge-triggered_D_flip-flop


A Memory Cell

▶ A single bit can be stored in 6 transistors
▶ That is how larger memories are built
▶ FPGAs have this type of on-chip memories
▶ Usually many of them in units of 2 KiB or 4 KiB
▶ We need some Chisel code to represent it
▶ More memory needs an external chip
▶ Then we need to interface this memory from the FPGA

12 / 42

https://en.wikipedia.org/wiki/Static_random-access_memory#/media/File:SRAM_Cell_(6_Transistors).svg


SRAM Memory

▶ RAM stands for random access memory
▶ SRAM stands for static RAM
▶ There is also something called DRAM for dynamic RAM

▶ Uses a capacitor and a transistor
▶ DRAM is smaller than SRAM
▶ But needs refreshes
▶ Different technology than technology for logic

▶ All on-chip memory is SRAM (today)

13 / 42



Memory Interface

▶ Interface
▶ Address input (e.g., 10 bits for 1 KiB)
▶ Write signal (e.g., we)
▶ Data input
▶ Data output

▶ May share pins for the data input and output (tri-state)
▶ May have read and write addresses

▶ A so-called dual ported memory
▶ Can do a read and a write in the same clock cycle

14 / 42



On-Chip Memory

▶ SRAM by itself is asynchronous
▶ No clock, just the correct timing
▶ Apply the address and after some time the data is valid
▶ But one can add input registers, which makes it a

synchronous SRAM
▶ Current FPGAs have synchronous memories only
▶ This means the result of a read is available one clock cycle

after the address is given
▶ This is different from the use of flip-flops (Reg(Vec(..)))

▶ FPGAs usually have dual-ported memories

15 / 42



Synchronous Memory

rdAddr

wrAddr

wrData

rdData

wrEna

Memory

16 / 42



Use of a Chisel SyncReadMem

class Memory() extends Module {

val io = IO(new Bundle {

val rdAddr = Input(UInt(10.W))

val rdData = Output(UInt(8.W))

val wrAddr = Input(UInt(10.W))

val wrData = Input(UInt(8.W))

val wrEna = Input(Bool())

})

val mem = SyncReadMem(1024, UInt(8.W))

io.rdData := mem.read(io.rdAddr)

when(io.wrEna) {

mem.write(io.wrAddr, io.wrData)

}

}

17 / 42



Read-During-Write

▶ What happens when one writes to and reads from the
same address?

▶ Which value is returned?
▶ Three possibilities:

1. The newly written value
2. The old value
3. Undefined (mix of old and new)

▶ Depends on technology, FPGA family, ...
▶ We want to have a defined read-during-write
▶ We add hardware to forward the written value

18 / 42



Condition for Forwarding

▶ If read and write addresses are equal
▶ If write enable is true
▶ Multiplex the output to take the new write value instead of

the (old) read value
▶ Delay that forwarded write value to have the same timing

19 / 42



Memory with Forwarding

rdAddr

wrAddr

wrData

rdData

wrEna

=
AND

dout

Memory

20 / 42



Forwarding in Chisel

val mem = SyncReadMem(1024, UInt(8.W))

val wrDataReg = RegNext(io.wrData)

val doForwardReg = RegNext(io.wrAddr ===

io.rdAddr && io.wrEna)

val memData = mem.read(io.rdAddr)

when(io.wrEna) {

mem.write(io.wrAddr, io.wrData)

}

io.rdData := Mux(doForwardReg , wrDataReg ,

memData)

21 / 42



External Memory

▶ On-chip memory is limited
▶ We can add an external memory chip

▶ Is cheaper than FPGA on-chip memory
▶ Sadly the Basys 3 board has no external memory
▶ Simple memory is an asynchronous SRAM

22 / 42



External SRAM

▶ We buy a CY7C1041CV33
▶ Let us look into the data sheet

23 / 42

https://www.infineon.com/dgdl/Infineon-CY7C1041CV33_Automotive_4-Mbit_(256_K_16)_Static_RAM_Datasheet-AdditionalTechnicalInformation-v04_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ecb80544500


Interfacing the SRAM

▶ FPGA output drives address, control, and data
(sometimes)

▶ FPGA reads data
▶ The read signal is asynchronous to the FPGA clock
▶ Do we need an input synchronizer?

24 / 42



Synchronous Interface

▶ Logic is synchroous
▶ Memory is asynchronous

▶ How to interface?
▶ Output signals

▶ Generate timing with synchronous circuit
▶ Small FSM

▶ Asynchronous input signale
▶ Usually 2 register for input synchronization
▶ Really needed for the SRAM interface?
▶ We would loose 2 clock cycles

25 / 42



SRAM Read

▶ Asynchronous timing definition (data sheet)
▶ But, we know the timing and we trigger the SRAM address

from our synchronous design
▶ No need to use synchronization registers
▶ Just get the timing correct
▶ Draw the example

▶ Address - SRAM - data
▶ Relative to the FPGA clock

26 / 42



Read Timing Continued

▶ Add all time delays
▶ Within FPGA
▶ Pad to pin
▶ PCB traces
▶ SRAM read timing
▶ PCB traces back
▶ Pin to pad
▶ Into FPGA register

▶ Setup and hold time for FPGA register

27 / 42



Connecting to the World

▶ Logic in the FPGA
▶ Described in Chisel
▶ Abstracting away electronic properties

▶ Interface to the world
▶ Simple switches and LEDs
▶ Did we think about timing?

▶ FPGA is one component of the system
▶ Need interconnect to

▶ Write outputs
▶ Read inputs
▶ Connect to other chips

28 / 42



Bus Interface

▶ Memory interface can be generalized
▶ We use a so-called bus to connect several devices
▶ Usually a microprocessor connected to devices (memory,

IO)
▶ The microprocessor is the master
▶ A bus is an interface definition

▶ Logic and timing
▶ Electrical interface

▶ Parallel or serial data
▶ Asynchronous or synchronous

▶ But interface clock is usually not the logic clock

29 / 42



Bus Properties

▶ Address bus and data bus
▶ Control lines (read and write)
▶ Several devices connected

▶ Multiple outputs
▶ Use tri-state to avoid multiple driver

▶ Single or multiple master
▶ Arbitration for multiple master

30 / 42



A Classic Microprocessor Bus

CPU

addr

Memory Input and
Output

data rd/wr rd/wr rd/wrdata dataaddr addr

Address
decoder

CSm CSio

31 / 42



Does This Work On-Chip?

▶ Just mapping that bus on-chip?
▶ Tri-state not so easy
▶ Wires are cheap
▶ Use dedicated connections and a Mux

32 / 42



An On-Chip Bus

CPU

Address
decoder

CSm

addr din dout rd/wr

Memory

addr din dout rd/wr

Input and
Output

addr din dout rd/wr

CSio

33 / 42



Serial I/O Interface

▶ Use only one wire for data transfer
▶ Bits are serialized
▶ That is where you need your shift register

▶ Shared wire or dedicated wires for transmit and receive
▶ Self timed

▶ Serial UART (RS 232)
▶ Ethernet
▶ USB

▶ With a clock signal
▶ SPI, I2C, ...

34 / 42



RS 232

▶ Old, but still common interface standard
▶ Was common in 90’ in PCs
▶ Now substituted by USB
▶ Still common in embedded systems
▶ Your Basys 3 board has a RS 232 interface

▶ Standard defines
▶ Electrical characteristics
▶ ’1’ is negative voltage (-15 to -3 V)
▶ ’0’ is positive voltage (+3 to +15 V)
▶ Converted by a RS 232 driver to normal logic voltage levels

35 / 42



Serial Transmission

▶ Transmission consists of
▶ Start bit (low)
▶ 8 data bits
▶ Stop bit(s) (high)

▶ Common baud rate is 115200 bits/s

b0 b1 b2 b3 b4 b5 b6 b7

36 / 42



RS 232 Interface

▶ How would we implement this?
▶ Baud rate is 115200 bit/s (ca. 10 us)
▶ Clock on Basys 3 is 100 MHz (10 ns)
▶ Output (transmit)
▶ Input (receive)
▶ Let us do it now together

37 / 42



RS 232 Interface

▶ Generate bit clock with with counter
▶ Like clock tick generation for display multiplexer

▶ Output (transmit)
▶ Use shift register for parallel to serial conversion
▶ Small FSM to generate start bit, data bits, and stop bits

▶ Input (receive)
▶ Detect start with the falling edge of the start bit
▶ Position into middle of start bit
▶ Sample individual bits
▶ Serial to parallel conversion with a shift register

38 / 42



Chisel Code for RS 232

▶ More explanation can be found in section 11.2
▶ The code is in the Chisel book
▶ uart.scala
▶ Also see example usage in chisel-examples repo

39 / 42

https://github.com/schoeberl/chisel-book/blob/master/src/main/scala/uart/uart.scala
https://github.com/schoeberl/chisel-examples


RS 232 on the Basys 3

▶ Basys 3 has an FTDI chip for the USB interface
▶ USB interface for FPAG programming
▶ But also provides a RS 232 to the FPGA
▶ You can talk with your laptop
▶ You have used it last week ago
▶ How did it go?

40 / 42



Today’s and next Lab

▶ Work on your Vending Machine
▶ As usual, show and discuss with a TA
▶ Get a tick from a TA when done. This is VERY important!
▶ Add features and show again to the TA
▶ Optional: Testing two given vending machines
▶ Next week (after Easter): full lab day!

41 / 42



Summary

▶ Use an FSMD for the vending machine and simple
processors

▶ Hardware can be highly parallel (GoL)
▶ We need to connect to the world
▶ FPGA (or any chip) is only part of a system
▶ Bus interface to external devices (e.g., memory)
▶ Serial interface to connect systems

▶ E.g., your Basys 3 board to the laptop

42 / 42


