
Interfacing and Memory

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

April 18, 2024

1 / 40



Overview

▶ Repeat FSMD (for the vending machine)
▶ I have (earlier) seen some intermix of FSM and datapath
▶ Works only for small designs

▶ Quick reminder on FSMD
▶ Interfaces
▶ Memory (intern and extern)

▶ You’ve asked for it during the midterm eval
▶ Busses
▶ The course evaluation should be open for feedback
▶ Lab is the vending machine

2 / 40



Notes

▶ Luca’s course
▶ Course evaluation is open
▶ Did you do a Tiny Tapeout?

▶ Next deadline is st June

3 / 40

https://tinytapeout.com/


I have seen similar code (not this year)

when(io.coin2) {

sum := sum + 2.U

} .elsewhen(io.coin5) {

sum := sum + 5.U

}

▶ This may work for tiny projects
▶ This style does not scale for larger designs
▶ I recommend using an FSM + datapath

▶ Split responsibility
▶ Can be individually tested
▶ Can be developed in parallel

4 / 40



Usage of an FSMD

▶ Of course for your VM
▶ The VM is a simple processor
▶ But not Turing complete
▶ Can only process coins of 2 and 5

▶ Have the FSM and the data path in two Modules
▶ An FSMD can be used to build a processor
▶ Fine for simple processors
▶ E.g., Lipsi
▶ Pipelined processor topic of

▶ Computer Architecture Engineering (02155)

5 / 40

https://github.com/schoeberl/lipsi


Test the FSMD for the VM

▶ This is the main part your vending machine
▶ Can be design and tested just with Chisel testers (no

FPGA board needed)
▶ See the given tester

▶ Sets the price to 7
▶ Adds two coins (2 and 5)
▶ Presses the buy button

▶ Extend the test along the development
▶ Remember test driven development?
▶ Maybe test developer and FSMD developer are not always

the same person

6 / 40



Testing Your Vending Machine

▶ Write (unit) tests for each component/module
▶ E.g., one for the data path, one for the state machine
▶ Then one (integration) test for the top-level

component/module
▶ Maybe do some extreme programming (XP)

▶ Write the test first
▶ Then the code of the component
▶ The test can serve as a specification
▶ We can do agile hardware development

7 / 40

https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Agile_software_development


Memory

▶ Registers are storage elements == memory
▶ Just use a Reg of a Vec
▶ This is 1 KiB of memory

val memoryReg = Reg(Vec(1024, UInt(8.W)))

// writing into memory

memoryReg(wrAddr) := wrData

// reading from the memory

val rdData = memoryReg(rdAddr)

▶ Simple, right?
▶ But is this a good solution?

8 / 40



A Flip-Flop

▶ Remember the circuit of a register (flip-flop)?
▶ Two latches: master and slave
▶ One (enable) latch can be built with 4 NAND gates
▶ a NAND gate needs 6 transistors, an inverter 2 transistors
▶ A flip-flop needs 20 transistors (for a single bit)
▶ Can we do better?

9 / 40

https://en.wikipedia.org/wiki/Flip-flop_(electronics)#Master%E2%80%93slave_edge-triggered_D_flip-flop


A Memory Cell

▶ A single bit can be stored in 6 transistors
▶ That is how larger memories are built
▶ FPGAs have this type of on-chip memories
▶ Usually many of them in units of 2 KiB or 4 KiB
▶ We need some Chisel code to represent it
▶ More memory needs an external chip
▶ Then we need to interface this memory from the FPGA

10 / 40

https://en.wikipedia.org/wiki/Static_random-access_memory#/media/File:SRAM_Cell_(6_Transistors).svg


SRAM Memory

▶ RAM stands for random access memory
▶ SRAM stands for static RAM
▶ There is also something called DRAM for dynamic RAM

▶ Uses a capacitor and a transistor
▶ DRAM is smaller than SRAM
▶ But needs refreshes
▶ Different technology than technology for logic

▶ All on-chip memory is SRAM (today)

11 / 40



Memory Interface

▶ Interface
▶ Address input (e.g., 10 bits for 1 KiB)
▶ Write signal (e.g., we)
▶ Data input
▶ Data output

▶ May share pins for the data input and output (tri-state)
▶ May have read and write addresses

▶ A so-called dual ported memory
▶ Can do a read and a write in the same clock cycle

12 / 40



On-Chip Memory

▶ SRAM by itself is asynchronous
▶ No clock, just the correct timing
▶ Apply the address and after some time the data is valid
▶ But one can add input registers, which makes it a

synchronous SRAM
▶ Current FPGAs have synchronous memories only
▶ This means the result of a read is available one clock cycle

after the address is given
▶ This is different from the use of flip-flops (Reg(Vec(..)))

▶ FPGAs usually have dual-ported memories

13 / 40



Synchronous Memory

rdAddr

wrAddr

wrData

rdData

wrEna

Memory

14 / 40



Use of a Chisel SyncReadMem

class Memory() extends Module {

val io = IO(new Bundle {

val rdAddr = Input(UInt(10.W))

val rdData = Output(UInt(8.W))

val wrAddr = Input(UInt(10.W))

val wrData = Input(UInt(8.W))

val wrEna = Input(Bool())

})

val mem = SyncReadMem(1024, UInt(8.W))

io.rdData := mem.read(io.rdAddr)

when(io.wrEna) {

mem.write(io.wrAddr, io.wrData)

}

}

15 / 40



Read-During-Write

▶ What happens when one writes to and reads from the
same address?

▶ Which value is returned?
▶ Three possibilities:

1. The newly written value
2. The old value
3. Undefined (mix of old and new)

▶ Depends on technology, FPGA family, ...
▶ We want to have a defined read-during-write
▶ We add hardware to forward the written value

16 / 40



Condition for Forwarding

▶ If read and write addresses are equal
▶ If write enable is true
▶ Multiplex the output to take the new write value instead of

the (old) read value
▶ Delay that forwarded write value to have the same timing

17 / 40



Memory with Forwarding

rdAddr

wrAddr

wrData

rdData

wrEna

=
AND

dout

Memory

18 / 40



Forwarding in Chisel

val mem = SyncReadMem(1024, UInt(8.W))

val wrDataReg = RegNext(io.wrData)

val doForwardReg = RegNext(io.wrAddr ===

io.rdAddr && io.wrEna)

val memData = mem.read(io.rdAddr)

when(io.wrEna) {

mem.write(io.wrAddr, io.wrData)

}

io.rdData := Mux(doForwardReg , wrDataReg ,

memData)

19 / 40



External Memory

▶ On-chip memory is limited
▶ We can add an external memory chip

▶ Is cheaper than FPGA on-chip memory
▶ Sadly the Basys 3 board has no external memory
▶ Simple memory is an asynchronous SRAM

20 / 40



External SRAM

▶ We buy a CY7C1041CV33
▶ Let us look into the data sheet

21 / 40

https://www.infineon.com/dgdl/Infineon-CY7C1041CV33_Automotive_4-Mbit_(256_K_16)_Static_RAM_Datasheet-AdditionalTechnicalInformation-v04_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ecb80544500


Interfacing the SRAM

▶ FPGA output drives address, control, and data
(sometimes)

▶ FPGA reads data
▶ The read signal is asynchronous to the FPGA clock
▶ Do we need an input synchronizer?

22 / 40



Synchronous Interface

▶ Logic is synchroous
▶ Memory is asynchronous

▶ How to interface?
▶ Output signals

▶ Generate timing with synchronous circuit
▶ Small FSM

▶ Asynchronous input signale
▶ Usually 2 register for input synchronization
▶ Really needed for the SRAM interface?
▶ We would loose 2 clock cycles

23 / 40



SRAM Read

▶ Asynchronous timing definition (data sheet)
▶ But, we know the timing and we trigger the SRAM address

from our synchronous design
▶ No need to use synchronization registers
▶ Just get the timing correct
▶ Draw the example

▶ Address - SRAM - data
▶ Relative to the FPGA clock

24 / 40



Read Timing Continued

▶ Add all time delays
▶ Within FPGA
▶ Pad to pin
▶ PCB traces
▶ SRAM read timing
▶ PCB traces back
▶ Pin to pad
▶ Into FPGA register

▶ Setup and hold time for FPGA register

25 / 40



Connecting to the World

▶ Logic in the FPGA
▶ Described in Chisel
▶ Abstracting away electronic properties

▶ Interface to the world
▶ Simple switches and LEDs
▶ Did we think about timing?

▶ FPGA is one component of the system
▶ Need interconnect to

▶ Write outputs
▶ Read inputs
▶ Connect to other chips

26 / 40



Bus Interface

▶ Memory interface can be generalized
▶ We use a so-called bus to connect several devices
▶ Usually a microprocessor connected to devices (memory,

IO)
▶ The microprocessor is the master
▶ A bus is an interface definition

▶ Logic and timing
▶ Electrical interface

▶ Parallel or serial data
▶ Asynchronous or synchronous

▶ But interface clock is usually not the logic clock

27 / 40



Bus Properties

▶ Address bus and data bus
▶ Control lines (read and write)
▶ Several devices connected

▶ Multiple outputs
▶ Use tri-state to avoid multiple driver

▶ Single or multiple master
▶ Arbitration for multiple master

28 / 40



A Classic Microprocessor Bus

CPU

addr

Memory Input and
Output

data rd/wr rd/wr rd/wrdata dataaddr addr

Address
decoder

CSm CSio

29 / 40



Does This Work On-Chip?

▶ Just mapping that bus on-chip?
▶ Tri-state not so easy
▶ Wires are cheap
▶ Use dedicated connections and a Mux

30 / 40



An On-Chip Bus

CPU

Address
decoder

CSm

addr din dout rd/wr

Memory

addr din dout rd/wr

Input and
Output

addr din dout rd/wr

CSio

31 / 40



Serial I/O Interface

▶ Use only one wire for data transfer
▶ Bits are serialized
▶ That is where you need your shift register

▶ Shared wire or dedicated wires for transmit and receive
▶ Self timed

▶ Serial UART (RS 232)
▶ Ethernet
▶ USB

▶ With a clock signal
▶ SPI, I2C, ...

32 / 40



RS 232

▶ Old, but still common interface standard
▶ Was common in 90’ in PCs
▶ Now substituted by USB
▶ Still common in embedded systems
▶ Your Basys 3 board has a RS 232 interface

▶ Standard defines
▶ Electrical characteristics
▶ ’1’ is negative voltage (-15 to -3 V)
▶ ’0’ is positive voltage (+3 to +15 V)
▶ Converted by a RS 232 driver to normal logic voltage levels

33 / 40



Serial Transmission

▶ Transmission consists of
▶ Start bit (low)
▶ 8 data bits
▶ Stop bit(s) (high)

▶ Common baud rate is 115200 bits/s

b0 b1 b2 b3 b4 b5 b6 b7

34 / 40



RS 232 Interface

▶ How would we implement this?
▶ Baud rate is 115200 bit/s (ca. 10 us)
▶ Clock on Basys 3 is 100 MHz (10 ns)
▶ Output (transmit)
▶ Input (receive)
▶ Let us do it now together

35 / 40



RS 232 Interface

▶ Generate bit clock with with counter
▶ Like clock tick generation for display multiplexer

▶ Output (transmit)
▶ Use shift register for parallel to serial conversion
▶ Small FSM to generate start bit, data bits, and stop bits

▶ Input (receive)
▶ Detect start with the falling edge of the start bit
▶ Position into middle of start bit
▶ Sample individual bits
▶ Serial to parallel conversion with a shift register

36 / 40



Chisel Code for RS 232

▶ More explanation can be found in section 11.2
▶ The code is in the Chisel book
▶ uart.scala
▶ Also see example usage in chisel-examples repo

37 / 40

https://github.com/schoeberl/chisel-book/blob/master/src/main/scala/uart/uart.scala
https://github.com/schoeberl/chisel-examples


RS 232 on the Basys 3

▶ Basys 3 has an FTDI chip for the USB interface
▶ USB interface for FPAG programming
▶ But also provides a RS 232 to the FPGA
▶ You can talk with your laptop
▶ You have used it two weeks ago

38 / 40



Today’s and next Lab

▶ Work on your Vending Machine
▶ As usual, show and discuss with a TA
▶ Get a tick from a TA when done. This is VERY important!
▶ Add features and show again to the TA
▶ Next week: guest lecture from Peter Jensen (SyoSil) on

verification

39 / 40



Summary

▶ Use an FSMD for the vending machine and simple
processors

▶ We need to connect to the world
▶ FPGA (or any chip) is only part of a system
▶ Bus interface to external devices (e.g., memory)
▶ Serial interface to connect systems

▶ E.g., your Basys 3 board to the laptop
▶ Testing is more than looking at waveforms

40 / 40


