
Communicating State Machines

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

April 4, 2024

1 / 43



Overview

▶ Display multiplexing solution
▶ Ready/valid interface
▶ Serial interface (RS 232)
▶ A little bit of Scala
▶ Hardware generators

2 / 43



Exam Info

▶ Exam will be online
▶ All aids allowed, except Internet
▶ PDF with exam questions
▶ Upload solution in a single PDF

▶ Please use your study number as file name
▶ Train to do a drawing and integrate it into a PDF

▶ Timing exercise, some coding, understanding questions,
drawing circuits

▶ I will upload older exams at DTU Learn and (partially)
solutions

3 / 43



Group Workflow Suggestions

▶ Share code on GitHub (private repo)
▶ Meet in Zoom: you all have a full license from DTU

▶ You can take over a screen to type
▶ You can draw on it
▶ Besides ad-hoc meetings, have regular project meetings

▶ Use Slack for quick notes and quick sharing of files
▶ Maybe also try to share the .bit file for the FPGA board
▶ Use Google docs for taking notes, start your report
▶ If you like Latex, use overleaf
▶ You can also work on the lab assignments at other times

than the lab time ;-)

4 / 43



One Possible Solution for Last Lab

val MAX_CNT = 100000.U // use a smaller value

for waveform viewing

val tickCntReg = RegInit(0.U(32.W))

val cntReg = RegInit(0.U(4.W))

val tick = tickCntReg === MAX_CNT

tickCntReg := Mux(tick, 0.U, tickCntReg + 1.U)

when (tick) {

cntReg := cntReg + 1.U

}

val m = Module(new SevenSegDec())

m.io.in := cntReg

sevSeg := m.io.out

5 / 43



A Self-Running Tester

▶ DisplaySpec is a self-running circuit
▶ Has no input
▶ Needs (almost) no stimuli (poke)
▶ Just run for a few cycles

class DisplaySpec extends AnyFlatSpec with

ChiselScalatestTester {

"DisplayTest " should "pass" in {

test(new

Display(20)).withAnnotations(Seq(WriteVcdAnnotation))

{ dut =>

dut.io.sw.poke(0x1234.U)

dut.clock.step(200)

}

}

}

6 / 43



Running the Test

▶ Does not really do any testing
▶ Just generated the waveform for debugging
▶ Just running 200 cycles does not show much
▶ Increase the number of running cycles to 100000000?
▶ Or use a different constant for testing?

7 / 43



Next Labs

▶ Next week: test a given Vending Machine (optional)
▶ The remaining weeks: work on the full Vending Machine

8 / 43



Communicating State Machines

▶ We did refactor a large FSM into smaller ones last week
▶ FSMs communicate
▶ Simple communication is:

▶ Input processing to the FSM
▶ FSM with the datapath

▶ More complex FSMs may exchange data with handshaking

9 / 43



Handshaking

▶ Producer of data and consumer need to agree when data
is transferred

▶ Producer tells when data is available/valid with a valid
signal

▶ Consumer tells when it is ready toe receive data with a
ready signal

▶ When both are asserted the transfer takes place
▶ Also called flow control

10 / 43



Ready-Valid Interface

valid

data

ready
ReceiverSender

▶ Ready-valid flow control

11 / 43



Ready-Valid Interface, Early Ready

clock

ready

valid

data D

1 2 3 4 5 6 7

12 / 43



Ready-Valid Interface, Late Ready

clock

ready

valid

data D

1 2 3 4 5 6 7

13 / 43



Single Cycle and Back-to-Back

clock

ready

valid

data D1 D2 D3

1 2 3 4 5 6 7

14 / 43



Some Rules and Usage

▶ There shall be no combinational dependencies between
ready and valid

▶ AXI uses ready/valid for all bus connections
▶ AXI restricts that valid asserted cannot be deasserted

without a transaction
▶ AXI sender is not allowed to wait for ready before

asserting valid
▶ AXI receivers do not have this restriction

15 / 43



Common Interface

▶ So common interface that Chisel defines a DecoupledIO

class DecoupledIO[T <: Data](gen: T) extends

Bundle {

val ready = Input(Bool())

val valid = Output(Bool())

val bits = Output(gen)

}

16 / 43



Serial I/O Interface

▶ Use only one wire for data transfer
▶ Bits are serialized
▶ That is where you need your shift register

▶ Shared wire or dedicated wires for transmit and receive
▶ Self timed

▶ Serial UART (RS 232)
▶ Ethernet
▶ USB

▶ With a clock signal
▶ SPI, I2C, ...

17 / 43



RS 232

▶ Old, but still common interface standard
▶ Was common in 90’ in PCs
▶ Now substituted by USB
▶ Still common in embedded systems
▶ Your Basys 3 board has a RS 232 interface

▶ Standard defines
▶ Electrical characteristics
▶ ’1’ is negative voltage (-15 to -3 V)
▶ ’0’ is positive voltage (+3 to +15 V)
▶ Converted by a RS 232 driver to normal logic voltage levels

18 / 43



Serial Transmission

▶ Transmission consists of
▶ Start bit (low)
▶ 8 data bits
▶ Stop bit(s) (high)

▶ Common baud rate is 115200 bits/s

b0 b1 b2 b3 b4 b5 b6 b7

19 / 43



RS 232 on the Basys 3

▶ You where asking for using more Basys 3 interfaces
▶ Basys 3 has an FTDI chip for the USB interface
▶ USB interface for FPAG programming
▶ But also provides a RS 232 to the FPGA
▶ You can talk with your laptop
▶ Your VM could write out some text
▶ Open a terminal to watch (show it)
▶ Use Putty as terminal program

20 / 43



RS 232 from ip-contributions

▶ A collection of Chisel hardware components
▶ Contains the RS232/UART interface
▶ Uses the Decoupled interface
▶ Distributed as library from Maven Central
▶ No need to copy source around
▶ Just include it in your build.sbt
▶ Very easy distribution of open-source components
▶ You can contribute!
▶ ip-contributions

21 / 43

https://github.com/freechipsproject/ip-contributions


First Summary and a Break

▶ Main topic of today done
▶ Following is advanced material
▶ A little bit of Scala
▶ How to write hardware generators
▶ Maybe extend your display to show decimal number
▶ But first 10 minutes BREAK

22 / 43



Binary-Coded Decimal (BCD)

▶ Your current display shows numbers in hexadecimal
▶ 1510 is displayed as 0F16
▶ Which is in binary: 00001111
▶ We would like to see it as a ‘1’ followed by a ‘5’
▶ Which is in binary: 0001 0101

▶ Convert from binary to binary-coded decimal (BCD)
▶ But only for the display
▶ Computing in BCD is hard

23 / 43



Binary to BCD Conversion Table

val bincode = io.sw(7,0)

val bcd = WireDefault(bincode)

switch(bincode) {

is(0.U) { bcd := "b0000_0000".U }

is(1.U) { bcd := "b0000_0001".U }

is(2.U) { bcd := "b0000_0010".U }

// ... some more

is(9.U) { bcd := "b0000_1001".U }

is(10.U) { bcd := "b0001_0000".U }

is(11.U) { bcd := "b0001_0001".U }

is(12.U) { bcd := "b0001_0010".U }

// ... and many more entries

}

dispMux.io.price := bcd

24 / 43



Binary-Coded Decimal (BCD)

▶ Conversion is a table (= function)
▶ Combinational logic
▶ We could do the table manually

▶ But it is large
▶ The table has 100 entries to convert 0 to 99 to BCD

▶ Let’s write a program for this
▶ We could use Java, Python, TCL,...
▶ With DE2 in VHDL I provided a Java program
▶ Now we can do this directly in Chisel/Scala

▶ We will write our first hardware generator
▶ First we need a little bit of Scala

25 / 43



Chisel and Scala

▶ Chisel is a library written in Scala
▶ Import the library with import chisel3.

▶ Chisel code is Scala code
▶ When it is run is generates hardware

▶ Verilog for synthesize
▶ Scala netlist for simulation (testing)

▶ Chisel is an embedded domain specific language
▶ Two languages in one can be a little bit confusing

26 / 43



Scala

▶ Is object oriented
▶ Is functional
▶ Strongly typed with very good type inference
▶ Runs on the Java virtual machine
▶ Can call Java libraries
▶ Consider it as Java++

▶ Can almost be written like Java
▶ With a more lightweight syntax

27 / 43



Scala Hello World

//- start hello_scala

object HelloScala extends App {

println("Hello Chisel World!")

}

//- end

▶ Compile with scalac and run with scala
▶ You can even use Scala as a scripting language
▶ Or run with sbt run
▶ Show both

28 / 43



Scala Values and Variables

▶ Scala has two type of variables: vals and vars
▶ A val cannot be reassigned, it is a constant
▶ We use a val to name a hardware component in Chisel

// A value is a constant

val zero = 0

// No new assignment is possible

// The following will not compile

zero = 3

▶ Types are usually inferred
▶ But can be explicitly stated as follows

val number: Int = 42

29 / 43



Scala Variables

▶ A var can be reassigned, it is like a classic variable
▶ We use a var to write a hardware generator in Chisel

// We can change the value of a var variable

var x = 2

x = 3

30 / 43



Simple Loops

// Loops from 0 to 9

// Automatically creates loop value i

for (i <- 0 until 10) {

println(i)

}

▶ We use a loop to generate hardware components

31 / 43



Scala for Loop for Circuit Generation

val regVec = Reg(Vec(8, UInt(1.W)))

regVec(0) := io.din

for (i <- 1 until 8) {

regVec(i) := regVec(i-1)

}

▶ for is Scala
▶ This loop generates several connections
▶ The connections are parallel hardware
▶ This is a shift register

32 / 43



Conditions

for (i <- 0 until 10) {

print(i)

if (i%2 == 0) {

println(" is even")

} else {

println(" is odd")

}

}

▶ Executed at runtime, when the circuit is created
▶ This is not a mlutplexer

33 / 43



Scala Arrays and Lists

// An integer array with 10 elements

val numbers = new Array[Int](10)

for (i <- 0 until numbers.length) {

numbers(i) = i*10

}

println(numbers(9))

// List of integers

val list = List(1, 2, 3)

println(list)

// Different form of list construction

val listenum = ’a’ :: ’b’ :: ’c’ :: Nil

println(listenum)

34 / 43



Scala Classes

// A simple class

class Example {

// A field, initialized in the constructor

var n = 0

// A setter method

def set(v: Int) = {

n = v

}

// Another method

def print() = {

println(n)

}

}

35 / 43



Scala (Singleton) Object

object Example {}

▶ For static fields and methods
▶ Scala has no static fields or methods like Java

▶ Needed for main
▶ Useful for helper functions

36 / 43



Singleton Object for the main

// A singleton object

object Example {

// The start of a Scala program

def main(args: Array[String]): Unit = {

val e = new Example()

e.print()

e.set(42)

e.print()

}

}

▶ Compile and run it with sbt (or within Eclipse/IntelliJ):

sbt "runMain Example"

37 / 43



Conditional Circuit Generation

class Base extends Module { val io = new Bundle() }

class VariantA extends Base { }

class VariantB extends Base { }

val m = if (useA) Module(new VariantA())

else Module(new VariantB())

▶ if and else is Scala
▶ if is an expression that returns a value

▶ Like “cond ? a : b;” in C and Java
▶ This is not a hardware multiplexer
▶ Decides which module to generate
▶ Could even read an XML file for the configuration

38 / 43



A Table with a Chisel Vec

▶ A Chisel Vec is a collection of signals/wires or registers
▶ Similar to an Array in other languages
▶ Vec in a Wire is a combinational table (multiplexer)
▶ Vec in a Reg is a collection of registers
▶ Create with number of elements and hardware type

val v = Wire(Vec(3, UInt(4.W)))

39 / 43



A Combinational Vec

▶ A combinational Vec is basically a multiplexer
▶ Input signal/wire connected with a constant index
▶ Output select with a Chisel UInt signal

v(0) := 1.U

v(1) := 3.U

v(2) := 5.U

val index = 1.U(2.W)

val a = v(index)

▶ Also convenient to represent a larger table
▶ Instead of a switch table
▶ Input can be generated with Scala code

40 / 43



Binary to BCD Conversion

import chisel3._

class BcdTable extends Module {

val io = IO(new Bundle {

val address = Input(UInt(8.W))

val data = Output(UInt(8.W))

})

val table = Wire(Vec(100, UInt(8.W)))

// Convert binary to BCD

for (i <- 0 until 100) {

table(i) := (((i/10)<<4) + i%10).U

}

io.data := table(io.address)

}

41 / 43



Today Lab

▶ Use of a UART
▶ lab7
▶ Is a communicating FSM problem, uses ready/valid

handshake
▶ You can discuss your solution with a TA
▶ Could be used for extended functions in the Vending

Machine
▶ You can now talk with your laptop :-)

42 / 43

https://github.com/schoeberl/chisel-lab/tree/master/lab7


Summary

▶ Communicating circuits/FSMs need handshaking
▶ Ready-valid interface
▶ Scala can be used to write circuit generators
▶ We explored generation of a binary to BCD conversion

table

43 / 43


