
Refactor of State Machines

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

March 21, 2024

1 / 49

TODO

▶ Show studie start slides

2 / 49

Outline

▶ Repeat finite-state machine with datapath
▶ Factoring of finite-state machines
▶ Functions and parameters
▶ Reset input

3 / 49

Popcount Example

▶ An FSMD that computes the popcount
▶ Also called the Hamming weight
▶ Compute the number of ‘1’s in a word
▶ Input is the data word
▶ Output is the count
▶ Code available at PopulationCount.scala

4 / 49

https://github.com/schoeberl/chisel-book/blob/master/src/main/scala/PopulationCount.scala

Popcount Block Diagram

dinValid popCntValid

FSM

din popCnt

popCntReadydinReady

Datapath

5 / 49

Popcount Connection

▶ Input din and output popCount
▶ Both connected to the datapath
▶ We need some handshaking
▶ For data input and for count

output

dinValid popCntValid

FSM

din popCnt

popCntReadydinReady

Datapath

6 / 49

Popcount Handshake

▶ We use a ready-valid handshake
▶ When data is available valid is

asserted
▶ When the receiver can accept

data ready is asserted
▶ Transfer takes place when both

are asserted

dinValid popCntValid

FSM

din popCnt

popCntReadydinReady

Datapath

7 / 49

The FSM

Count

Idle

Done

Valid

Finished

Result read

▶ A Very Simple FSM
▶ Two transitions depend on input/output handshake
▶ One transition on the datapath output

8 / 49

The Datapath

 +

shf
din

0
0 cnt

count

9 / 49

Let’s Explore the Code

▶ In PopCount.scala

10 / 49

https://github.com/schoeberl/chisel-book/blob/master/src/main/scala/PopCount.scala

Usage of an FSMD

▶ Maybe the main part your vending machine is an FSMD?

11 / 49

FSM with Datapath

▶ A type of computing machine
▶ Consists of a finite-state machine (FSM) and a datapath
▶ The FSM is the master (the controller) of the datapath
▶ The datapath has computing elements

▶ E.g., adder, incrementer, constants, multiplexers, ...
▶ The datapath has storage elements (registers)

▶ E.g., sum of money payed, count of something, ...

12 / 49

FSM-Datapath Interaction

▶ The FSM controls the datapath
▶ For example, add 2 to the sum

▶ By controlling multiplexers
▶ For example, select how much to add
▶ Not adding means selecting 0 to add

▶ Which value goes where
▶ The FSM logic also depends on datapath output

▶ Is there enough money payed to release a can of soda?
▶ FSM and datapath interact

13 / 49

Factoring FSMs

▶ Divide a big problem into several smaller problems
▶ Splitting a FSM into two or more

▶ Simplify the design
▶ FSMs communicate via logic signals

▶ FSM provides input controls signals to another
▶ FSM senses output from another

14 / 49

Specification Of a Light Flasher

▶ Inputs: start
▶ Outputs: light
▶ Operation:

▶ When in = 1, FSM goes through 5 sequences:
▶ On-Off-On-Off-On

▶ Each On sequence (flash):
▶ out = 1
▶ 6 cycles long

▶ Each Off sequence (space):
▶ out = 0
▶ 4 cycles long

▶ After 5 sequences, FSM goes back to off state to wait for
new input

15 / 49

Light Flasher State Diagram

▶ Example from Dally, Chapter 17
▶ Copyright figure, so show it from older slides

16 / 49

Specification Change

▶ We have a flat FSM with 27 states
▶ 27 is(state) statements

▶ If we change the specification to
▶ 12 cycles for each flash
▶ 4 flashes
▶ 7 cycles between flashes
▶ Complete change of switch statement
▶ Now 70 is statements!

▶ This does not scale

17 / 49

Factor Light Flasher

▶ Factor out counting on and off intervals
▶ Into a timer
▶ Reduces 6 and 4 states sequences into two single states

▶ Results in
▶ a master FSM and
▶ a timer FSM

▶ Simplifies FSMs
▶ Allows easier change of interval lengths

18 / 49

Factored Light Flasher

start

tim
er

Lo
ad

light
Master FSM

Timer FSM
tim

er
Se

le
ct

tim
er

D
on

e

▶ Time loads value 5 or 3, based in timerSelect

19 / 49

Timer Specification

▶ Two inputs
▶ timerLoad to load the down counter
▶ timerSelect to select between 6 and 4 cycles counting

▶ Output
▶ timerDone is 1 when counter has completed the countdown
▶ Remains asserted until counter reloaded

▶ Counter can be (re)loaded in any state
▶ When not loaded it counts down to zero

▶ Similar to the timer we looked at two weeks ago

20 / 49

The Timer FSM

val timerReg = RegInit(0.U)

timerDone := timerReg === 0.U

// Timer FSM (down counter)

when(!timerDone) {

timerReg := timerReg - 1.U

}

when (timerLoad) {

when (timerSelect) {

timerReg := 5.U

} .otherwise {

timerReg := 3.U

}

}

21 / 49

The Master FSM

▶ Show in IntelliJ
▶ Run test and show waveform

22 / 49

Result of Refactoring

▶ State of original flat FSM has been separated
▶ The part of cycle counting in the counter
▶ Part flash or space in master FSM
▶ Represent original 27 states in just two 6 states FSMs
▶

▶ BTW: the master FSM is a Mealy FSM

23 / 49

Still Redundancy in FSM

▶ flash1, flash2, and flash3 same function
▶ space1 and space2 same function
▶ Refactor number of remaining flashes
▶ Master FSM states: off, flash, and space

24 / 49

Factor out “flash number”

start

tim
er

Lo
ad

light
Master FSM

Timer

tim
er

Se
le

ct

tim
er

D
on

e

cn
tL

oa
d

Counter

cn
tD

ec
r

cn
tD

on
e

25 / 49

Counter

val cntReg = RegInit(0.U)

cntDone := cntReg === 0.U

// Down counter FSM

when(cntLoad) { cntReg := 2.U }

when(cntDecr) { cntReg := cntReg - 1.U }

▶ Loaded with 2 for 3 flashes
▶ Counts the remaining flashes

26 / 49

Code of Flasher2

▶ Show in IntelliJ
▶ Run test and show waveform

27 / 49

Benefits of Refactored Solution

▶ Master FSM has just three states: off, flash, and space
▶ Change of intervals or number of flashes needs no change

in the FSM
▶ Smaller components are easier to read and simpler to test

individually

28 / 49

Usage in your VM

▶ Maybe factor out the edge detection for the button(s)
▶ Use a timer for more advanced user interface

▶ Blinking LED on some error
▶ Write text as a banner in the 7-segment display
▶ ...

29 / 49

10’ Break

30 / 49

Input Processing

▶ Input signals are not synchronous to the clock
▶ May violate setup and hold time of a flip-flop
▶ Can lead to metastability
▶ Signals need to be synchronized
▶ Using two flip-flops
▶ Debouncing the input with subsampling
▶ Input signal may be noisy (spikes)

31 / 49

Input Synchronizer

Synchronous circuit

External world

btn btnSync

val btnSync = RegNext(RegNext(btn))

32 / 49

Sampling for Debouncing

bouncing in

debounced A

debounced B

33 / 49

Noisy Input Signal

▶ Sometimes input may be noisy
▶ May contain spikes
▶ Filtering with majority voting
▶ Majority voting of the sampled input signal
▶ However, this is seldom needed
▶ Not for the buttons you have

34 / 49

Majority Voting

en en en

din

Majority voting

dout = (a & b) | (a & c) | (b & c)

a b c

dout

tick

35 / 49

Majority Voting

val shiftReg = RegInit(0.U(3.W))

when (tick) {

// shift left and input in LSB

shiftReg := shiftReg(1, 0) ## btnDebReg

}

// Majority voting

val btnClean = (shiftReg(2) & shiftReg(1)) |

(shiftReg(2) & shiftReg(0)) | (shiftReg(1) &

shiftReg(0))

36 / 49

Detecting the Press Event

▶ Edge detection
▶ You have seen this before
▶ Just to complete the input procssing

val risingEdge = btnClean & !RegNext(btnClean)

// Use the rising edge of the debounced and

// filtered button to count up

val reg = RegInit(0.U(8.W))

when (risingEdge) {

reg := reg + 1.U

}

37 / 49

Display Multiplexing

▶ Saving of pins in the FPGA
▶ Switch between the four digits at around 1 kHz
▶ Switch faster in simulation
▶ Show schematics
▶ Also includes a display simulation for those without an

FPGA
▶ Lab 6
▶ Sketch needed hardware on black board

38 / 49

https://digilent.com/reference/basys3/refmanual#basic_io
https://github.com/schoeberl/chisel-lab/tree/master/lab6

Functions

▶ Circuits can be encapsulated in functions
▶ Each function call generates hardware
▶ A function is defined with def name
▶ Similar to methods in Java

def adder (x: UInt, y: UInt) = {

x + y

}

val x = adder(a, b)

// another adder

val y = adder(c, d)

39 / 49

More Function Examples

▶ Functions can also contain registers
▶ Simple functions can be a single line

def delay(x: UInt) = RegNext(x)

def rising(d: Bool) = d && !RegNext(d)

val edge = rising(cond)

40 / 49

The Counter as a Function

▶ Longer functions in curly brackets
▶ Last value is the return value

// This function returns a counter

def genCounter(n: Int) = {

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === n.U, 0.U, cntReg +

1.U)

cntReg

}

// now we can easily create many counters

val count10 = genCounter(10)

val count99 = genCounter(99)

41 / 49

Functional Abstraction

▶ Functions for repeated pieces of logic
▶ May contain state
▶ Functions may return hardware
▶ More lightweight than a Module

42 / 49

Parameterization

class ParamChannel(n: Int) extends Bundle {

val data = Input(UInt(n.W))

val ready = Output(Bool())

val valid = Input(Bool())

}

val ch32 = new ParamChannel(32)

▶ Bundles and modules can be parametrized
▶ Pass a parameter in the constructor

43 / 49

A Module with a Parameter

class ParamAdder(n: Int) extends Module {

val io = IO(new Bundle{

val a = Input(UInt(n.W))

val b = Input(UInt(n.W))

val c = Output(UInt(n.W))

})

io.c := io.a + io.b

}

▶ Parameter can also be a Chisel type

44 / 49

Use the Parameter

val add8 = Module(new ParamAdder(8))

val add16 = Module(new ParamAdder(16))

▶ Can be used for the display multiplexing configuration
▶ Different maximum value for the counter for the simulation

and for the FPGA

45 / 49

Combine Input Processing with Functions

▶ Using small functions to abstract the processing
▶ Debounce.scala

46 / 49

https://github.com/schoeberl/chisel-book/blob/master/src/main/scala/Debounce.scala

Reset is an Asynchronous Signal

▶ Needs a input synchronizer
▶ Usually hidden in Chisel, but easy to access
▶ Do the reset synchronizer at the top level module

class SyncReset extends Module {

val io = IO(new Bundle() {

val value = Output(UInt())

})

val syncReset = RegNext(RegNext(reset))

val cnt = Module(new WhenCounter(5))

cnt.reset := syncReset

io.value := cnt.io.cnt

}

47 / 49

DTU Chip Day

▶ Program is online
▶ Register here
▶ Free sandwiches and free beer ;-)

48 / 49

https://dtu.events/dtuchipday2024/agenda
https://dtu.events/dtuchipday2024/signup

Summary

▶ Divide a bigger problem into smaller ones
▶ Easier to design
▶ Easier to test
▶ Sometimes only feasible solution

▶ Factoring state machines
▶ Separate state into multiple ‘orthogonal’ state variables
▶ Each is simpler to handle (fewer states)
▶ “Factors out” repetitive sequences
▶ Hierarchical structure

49 / 49

