
Finite State Machine with Datapath

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

March 14, 2024

1 / 40



Overview

▶ Review Vec
▶ Counter based circuits
▶ Finite-state machines (FSMs)
▶ FSM with Datapath
▶ Input processing

2 / 40



Last Lab

▶ A table to describe a 7-segment decoder and drive it
▶ Did you finish the exercises?
▶ Did you run it on your Basys3 board?
▶ Show it a TA for a tick!

3 / 40



TinyTapeout

▶ Do a real chip within DE 2
▶ a multi-project waver (within a multi-project waver)
▶ I can pay a few projects
▶ TinyTapeout
▶ Chisel template

4 / 40

https://tinytapeout.com/
https://github.com/schoeberl/tt04-chisel-demo


Vectors

▶ A powerful abstraction
▶ Let us repeat it today
▶ A vector (Vec) is an indexable collection
▶ Similar to an array in Java
▶ Selecting an element for read is a multiplexer
▶ Selecting an element to write is an input to a multiplexer or

a register enable
▶ Bundles are constructs to structure data
▶ Similar to a class in Java or a record in C/VHDL

5 / 40



A Vector is a Multiplexer

▶ Follwing code is a 3:1 multiplexer

val m = Wire(Vec(3, UInt(8.W)))

m(0) := x

m(1) := y

m(2) := z

val muxOut = m(select)

x

muxOut

select

y

0

1

z 2

6 / 40



A Vector of Registers

▶ Following code shows vectors and registers in action

val vReg = Reg(Vec(3, UInt(8.W)))

val dout = vReg(rdIdx)

vReg(wrIdx) := din

▶ Can you draw the schematic?

7 / 40



Schematic of the Reg of Vec

en

en

en

din dout
0

rdIdx

2

1

decoderwrIdx

8 / 40



Generating Timing with Counters

▶ Generate a tick at a lower frequency
▶ We used it in Lab 1 for the blinking LED
▶ You needed it for last week’s lab
▶ We will use it again in next week’s lab
▶ Use it for driving the display multiplexing at 1 kHz

clock

reset

tick

counter 0 1 2 0 1 2 0 1

9 / 40



The Tick Generation

val tickCounterReg = RegInit(0.U(32.W))

val tick = tickCounterReg === (N-1).U

tickCounterReg := tickCounterReg + 1.U

when (tick) {

tickCounterReg := 0.U

}

10 / 40



Using the Tick

▶ A counter running at a slower frequency
▶ By using the tick as an enable signal

val lowFrequCntReg = RegInit(0.U(4.W))

when (tick) {

lowFrequCntReg := lowFrequCntReg + 1.U

}

11 / 40



The Slow Counter

▶ Incremented every tick

clock

reset

tick

slow cnt 0 1 2

12 / 40



What is the Use of This Slow Counter?

▶ This will be your lab exercise next week
▶ For the display multiplexing
▶ Then you need to generate a timing of 1 kHz (1 ms)

13 / 40



Finite-State Machine (FSM)

▶ Has a register that contains the state
▶ Has a function to computer the next state

▶ Depending on current state and input
▶ Has an output depending on the state

▶ And maybe on the input as well
▶ Every synchronous circuit can be considered a finite state

machine
▶ However, sometimes the state space is a little bit too large

14 / 40



Basic Finite-State Machine

▶ A state register
▶ Two combinational blocks

▶ Next state logic
▶ Output logic

in

state

nextState
Next 
state
logic

Ouput
logic out

15 / 40



State Diagrams are Convenient

bad event

green orange red/
ring bell

bad event

clear

reset

clear

▶ States and transitions depending on input values
▶ Example is a simple alarm FSM
▶ Nice visualization
▶ Will not work for large FSMs

16 / 40



A Mealy FSM

▶ Similar to the former FSM
▶ Output also depends in the input
▶ Output is faster
▶ Less composable as we may have combinational circles

in

state

nextState
Next 
state
logic Output

logic out

17 / 40



The Mealy FSM for the Rising Edge

▶ Output is also part of the transition arrows

zero one

1/1

reset

0/0

0/0 1/0

18 / 40



State Diagram for the Moore Rising Edge Detection

▶ We need three states

1

zero
0

pulse
1

one
0

1

0

reset

0

19 / 40



Comparing with a Timing Diagram

▶ Moore is delayed by one clock cycle compared to Mealy

clock

din

risingEdge Mealy

risingEdge Moore

20 / 40



What is Better?

▶ It depends ;-)
▶ Moore is on the save side
▶ Moore is composable
▶ Mealy has faster reaction
▶ Both are tools in you toolbox
▶ Keep it simple with your vending machine and use a Moore

FSM

21 / 40



Working Break

▶ 20’ break
▶ We are half way through the course
▶ Therefore, a midterm evaluation
▶ Send also on Slack (from the slide sources or the website)

22 / 40

https://docs.google.com/forms/d/e/1FAIpQLSeG8Xx_CzV8667XW9J90nYniskKuNI6k1FrfsSsEyXkH8O4tg/viewform?usp=sf_link


FSM with Datapath

▶ A type of computing machine
▶ Consists of a finite-state machine (FSM) and a datapath
▶ The FSM is the master (the controller) of the datapath
▶ The datapath has computing elements

▶ E.g., adder, incrementer, constants, multiplexers, ...
▶ The datapath has storage elements (registers)

▶ E.g., sum of money payed, count of something, ...

23 / 40



FSM-Datapath Interaction

▶ The FSM controls the datapath
▶ For example, add 2 to the sum

▶ By controlling multiplexers
▶ For example, select how much to add
▶ Not adding means selecting 0 to add

▶ Which value goes where
▶ The FSM logic also depends on datapath output

▶ Is there enough money payed to release a can of soda?
▶ FSM and datapath interact

24 / 40



Popcount Example

▶ An FSMD that computes the popcount
▶ Also called the Hamming weight
▶ Compute the number of ‘1’s in a word
▶ Input is the data word
▶ Output is the count
▶ Code available at PopulationCount.scala

25 / 40

https://github.com/schoeberl/chisel-book/blob/master/src/main/scala/PopulationCount.scala


Popcount Block Diagram

dinValid popCntValid

FSM

din popCnt

popCntReadydinReady

Datapath

26 / 40



Popcount Connection

▶ Input din and output popCount
▶ Both connected to the datapath
▶ We need some handshaking
▶ For data input and for count

output

dinValid popCntValid

FSM

din popCnt

popCntReadydinReady

Datapath

27 / 40



Popcount Handshake

▶ We use a ready-valid handshake
▶ When data is available valid is

asserted
▶ When the receiver can accept

data ready is asserted
▶ Transfer takes place when both

are asserted
▶ Draw the ready/valid handshake

on the black board

dinValid popCntValid

FSM

din popCnt

popCntReadydinReady

Datapath

28 / 40



The FSM

Count

Idle

Done

Valid

Finished

Result read

▶ A Very Simple FSM
▶ Two transitions depend on input/output handshake
▶ One transition on the datapath output

29 / 40



The Datapath

 +

shf
din

0
0 cnt

count

30 / 40



Let’s Explore the Code

▶ In PopulationCount.scala

31 / 40

https://github.com/schoeberl/chisel-book/blob/master/src/main/scala/PopulationCount.scala


Usage of an FSMD

▶ Maybe the main part of your vending machine is an
FSMD?

32 / 40



Input Processing

▶ Input signals are not synchronous to the clock
▶ May violate setup and hold time of a flip-flop
▶ Can lead to metastability
▶ Signals need to be synchronized
▶ Using two flip-flops
▶ Metastability cannot be avoided
▶ Assumption is:

▶ First flip-flop may become metastable
▶ But will resolve within the clock period

▶ Input can arrive at different clock cycles at different places

33 / 40



Input Synchronizer

Synchronous circuit

External world

btn btnSync

val btnSync = RegNext(RegNext(btn))

34 / 40



Bouncing Buttons

▶ Buttons and switches need some time to transition
between on and off

▶ May bounce between the two values
▶ Without processing we detect more than one event
▶ Solution is to filter out bouncing

▶ Can be done electrically (R + C + Schmitt trigger)
▶ That is why you have the extra PCB with the buttons
▶ But we can also do this digitally
▶ You can then drop your additional board ;-)

▶ Assume bouncing time tbounce

▶ Sample at a period T > tbounce

▶ Only use sampled signal

35 / 40



Sampling for Debouncing

bouncing in

debounced A

debounced B

36 / 40



Sampling for Debouncing

val fac = 100000000/100

val btnDebReg = Reg(Bool())

val cntReg = RegInit(0.U(32.W))

val tick = cntReg === (fac-1).U

cntReg := cntReg + 1.U

when (tick) {

cntReg := 0.U

btnDebReg := btnSync

}

▶ We already know how to do this!
▶ Just generate timing with a counter
▶ We sample at 100 Hz (bouncing below 10 ms)

37 / 40



Agile Hardware Design Course

▶ Advanced Chisel
▶ by Scott Beamer from UC Santa Cruz
▶ Includes executable slides
▶ https://classes.soe.ucsc.edu/cse228a/Winter23/

▶ Includes Videos
▶ I will do a similar course for the new CE Bachelor

38 / 40

https://classes.soe.ucsc.edu/cse228a/Winter23/


Today’s Lab

▶ Paper & pencil exercises (see course website)
▶ Exercises on FSMs
▶ From the Dally book
▶ Just sketch the Chisel code
▶ On paper or in a plain text editor
▶ As usual, show and discuss your solution with a TA
▶ Also finish you lab from last week and get the tick

39 / 40



Summary

▶ Counters are used to generate timing
▶ An FSM can control a datapath, which is an FSMD
▶ An FSMD is a computing machine
▶ Input needs to be processed (synchronize, maybe

debounce)

40 / 40


