
Finite-State Machines

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

March 7, 2024

1 / 49



Overview

▶ A bit of testing (repetition)
▶ Fun with counters
▶ Finite-state machines
▶ Collection with Vec

2 / 49



Organization and Lab Work

▶ How did the testing lab work? Did you find both bugs?
▶ This week is the 7-segment decoder
▶ This is part of the lab grade – show it a TA

▶ Deadline is next week (100 %)
▶ In two weeks (21/3) only 50 %

▶ Register your group to get a number!
▶ Group name: VM Machine

3 / 49



Testing with Chisel

▶ A test contains
▶ a device under test (DUT) and
▶ the testing logic

▶ Set input values with poke
▶ Advance the simulation with step
▶ Read the output values with peek
▶ Compare the values with expect
▶ Import following packages

import chisel3._

import chiseltest._

import org.scalatest.flatspec.AnyFlatSpec

4 / 49



An Example DUT

▶ A device-under test (DUT)
▶ Just 2-bit AND logic

class DeviceUnderTest extends Module {

val io = IO(new Bundle {

val a = Input(UInt(2.W))

val b = Input(UInt(2.W))

val out = Output(UInt(2.W))

val equ = Output(Bool())

})

io.out := io.a & io.b

io.equ := io.a === io.b

}

5 / 49



A ChiselTest

▶ Extends class AnyFlatSpec with ChiselScalatestTester
▶ Has the device-under test (DUT) as parameter of the
test() function

▶ Test function contains the test code
▶ Testing code can use all features of Scala
▶ Is placed in src/test/scala
▶ Is run with sbt test

6 / 49



Testing with expect()

▶ Poke values and expect some output

class SimpleTestExpect extends AnyFlatSpec

with ChiselScalatestTester {

"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

dut.io.out.expect(0.U)

dut.io.a.poke(3.U)

dut.io.b.poke(2.U)

dut.clock.step()

dut.io.out.expect(2.U)

}

}

}

7 / 49



Call the Tester for Waveform Generation

▶ The complete test
▶ Note the .withAnnotations(Seq(WriteVcdAnnotation)

class Count6WaveSpec extends AnyFlatSpec with

ChiselScalatestTester {

"CountWave6 " should "pass" in {

test(new

Count6).withAnnotations(Seq(WriteVcdAnnotation))

{ dut =>

dut.clock.step(20)

}

}

}

8 / 49



Display Waveform with GTKWave

▶ Run the tester: sbt test
▶ Locate the .vcd file in test run dir/...
▶ Start GTKWave
▶ Open the .vcd file with

▶ File – Open New Tab
▶ Select the circuit
▶ Drag and drop the interesting signals

9 / 49



Counters as Building Blocks

▶ Counters are versatile tools
▶ Count events
▶ Generate timing ticks
▶ Generate a one-shot timer

10 / 49



Counting Up and Down

▶ Up:

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.U

when(cntReg === N) {

cntReg := 0.U

}

▶ Down:

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.U) {

cntReg := N

}

11 / 49



Generating Timing with Counters

▶ Generate a tick at a lower frequency
▶ We used it in Lab 1 for the blinking LED
▶ Use it today for the lab exercise
▶ Use it for driving the free running counter at 2 Hz

clock

reset

tick

counter 0 1 2 0 1 2 0 1

12 / 49



The Tick Generation

val tickCounterReg = RegInit(0.U(32.W))

val tick = tickCounterReg === (N-1).U

tickCounterReg := tickCounterReg + 1.U

when (tick) {

tickCounterReg := 0.U

}

13 / 49



Using the Tick

▶ A counter running at a slower frequency
▶ By using the tick as an enable signal

val lowFrequCntReg = RegInit(0.U(4.W))

when (tick) {

lowFrequCntReg := lowFrequCntReg + 1.U

}

14 / 49



The Slow Counter

▶ Incremented every tick

clock

reset

tick

slow cnt 0 1 2

15 / 49



A Timer

▶ Like a kitchen timer
▶ Start by loading a timeout value
▶ Count down till 0
▶ Assert done when finished

16 / 49



One-Shot Timer

 +

=0 done

load

din

-1
0

Select

cntRegnext

17 / 49



One-Shot Timer

val cntReg = RegInit(0.U(8.W))

val done = cntReg === 0.U

val next = WireDefault(0.U)

when (load) {

next := din

} .elsewhen (!done) {

next := cntReg - 1.U

}

cntReg := next

18 / 49



A 4 Stage Shift Register

din dout

val shiftReg = Reg(UInt(4.W))

shiftReg := shiftReg(2, 0) ## din

val dout = shiftReg(3)

19 / 49



A Shift Register with Parallel Output

serIn

q3 q2 q1 q0

val outReg = RegInit(0.U(4.W))

outReg := serIn ## outReg(3, 1)

val q = outReg

20 / 49



A Shift Register with Parallel Load

d3

load

d2

load

d1

load

d0

load

serOut
0

val loadReg = RegInit(0.U(4.W))

when (load) {

loadReg := d

} otherwise {

loadReg := 0.U ## loadReg(3, 1)

}

val serOut = loadReg(0)

21 / 49



A Simple Circuit

▶ What does the following circuit?
▶ Is this related to a finite-state machine?

AND
NOTdin

risingEdge

22 / 49



Before the Break

▶ Let us talk about AI tools

23 / 49



ChatGPT/Copilot

▶ Maybe useful to learn a language
▶ Sometimes ChatGPT uses old Chisel constructs
▶ Sometimes it is even plain wrong
▶ DTU does not allow the usage at the exam

▶ We will have the exam online without Internet access
▶ My personal opinion:

▶ It is just a new tool
▶ We cannot really (and shall not) disallow tools (grammar

check, calculator, programming,...)
▶ We will need to learn how to deal with it
▶ I use Copilot in my editor
▶ Sometimes I use ChatGPT to rewrite text

24 / 49



ChatGPT/Copilot

▶ This morning I tried to solve todays lab with ChatGPT (3.5)
▶ It took me 4 prompts and one correction prompt
▶ The result looks correct
▶ Done in 10 minutes
▶ Can one learn to code with ChatGPT? Even better?
▶ I do not know

25 / 49



Finite-State Machine (FSM)

▶ Has a register that contains the state
▶ Has a function to computer the next state

▶ Depending on current state and input
▶ Has an output depending on the state

▶ And maybe on the input as well
▶ Every synchronous circuit can be considered a finite state

machine
▶ However, sometimes the state space is a little bit too large

26 / 49



Basic Finite-State Machine

▶ A state register
▶ Two combinational blocks

in

state

nextState
Next 
state
logic

Ouput
logic out

27 / 49



State Diagram

bad event

green orange red/
ring bell

bad event

clear

reset

clear

▶ States and transitions depending on input values
▶ Example is a simple alarm FSM
▶ Nice visualization
▶ Will not work for large FSMs
▶ Complete code in the Chisel book

28 / 49



State Table for the Alarm FSM

Input

State Bad event Clear Next state Ring bell

green 0 0 green 0
green 1 - orange 0

orange 0 0 orange 0
orange 1 - red 0
orange 0 1 green 0

red 0 0 red 1
red 0 1 green 1

29 / 49



The Input and Output of the Alarm FSM

▶ Two inputs and one output

val io = IO(new Bundle{

val badEvent = Input(Bool())

val clear = Input(Bool())

val ringBell = Output(Bool())

})

30 / 49



Encoding the State

▶ We can optimize state encoding
▶ Two common encodings are: binary and one-hot
▶ We leave it to the synthesize tool
▶ Use symbolic names with ChiselEnum

object State extends ChiselEnum {

val green, orange, red = Value

}

import State._

31 / 49



Start the FSM

▶ We have a starting state on reset

val stateReg = RegInit(green)

32 / 49



The Next State Logic
switch (stateReg) {

is (green) {

when(io.badEvent) {

stateReg := orange

}

}

is (orange) {

when(io.badEvent) {

stateReg := red

} .elsewhen(io.clear) {

stateReg := green

}

}

is (red) {

when (io.clear) {

stateReg := green

}

}

}

33 / 49



The Output Logic

io.ringBell := stateReg === red

34 / 49



Summary of the Alarm Example

▶ Three elements:
1. State register
2. Next state logic
3. Output logic

▶ This was a so-called Moore FSM
▶ There is also a FSM type called Mealy machine

35 / 49



A so-called Mealy FSM

▶ Similar to the former FSM
▶ Output also depends in the input
▶ It can react faster
▶ Less composable (draw it)

in

state

nextState
Next 
state
logic Output

logic out

36 / 49



The Mealy FSM for the Rising Edge

▶ That was our starting example
▶ Output is also part of the transition arrows

zero one

1/1

reset

0/0

0/0 1/0

37 / 49



The Mealy Solution

▶ Show code in IntelliJ as it is too long for slides

38 / 49



State Diagram for the Moore Rising Edge Detection

▶ We need three states

1

zero
0

pulse
1

one
0

1

0

reset

0

39 / 49



Comparing with a Timing Diagram

▶ Moore is delayed one clock cycle compared to Mealy

clock

din

risingEdge Mealy

risingEdge Moore

40 / 49



What is Better?

▶ It depends ;-)
▶ Moore is on the save side
▶ More is composable
▶ Mealy has faster reaction
▶ Both are tools in you toolbox
▶ Keep it simple with your vending machine and use a Moore

FSM

41 / 49



Another Simple FSM

▶ a FSM for a single word buffer
▶ Just two symbols for the state machine

object State extends ChiselEnum {

val empty, full = Value

}

42 / 49



Finite State Machine for a Buffer
object State extends ChiselEnum {

val empty, full = Value

}

import State._

val stateReg = RegInit(empty)

val dataReg = RegInit(0.U(8.W))

when(stateReg === empty) {

when(io.in.valid) {

dataReg := io.in.bits

stateReg := full

}

} .otherwise { // full

when(io.out.ready) {

stateReg := empty

}

}

▶ A simple buffer for a bubble FIFO 43 / 49



Group Signals with a Bundle

▶ Group signals that belong to each other
▶ Reference as a whole
▶ Individual fields accessed by their name
▶ E.g., ref.field

class Channel() extends Bundle {

val data = UInt(32.W)

val valid = Bool()

}

44 / 49



A Collection of Signals with Vec

▶ Chisel Vec is a collection of signals of the same type
▶ The collection can be accessed by an index
▶ Similar to an array in other languages
▶ Wrap into a Wire() for combinational logic
▶ Wrap into a Reg() for a collection of registers

val v = Wire(Vec(3, UInt(4.W)))

45 / 49



Using a Vec

v(0) := 1.U

v(1) := 3.U

v(2) := 5.U

val index = 1.U(2.W)

val a = v(index)

▶ Reading from an Vec is a multplexer
▶ We can put a Vec into a Reg

val registerFile = Reg(Vec(32, UInt(32.W)))

An element of that register file is accessed with an index and
used as a normal register.

registerFile(index) := dIn

val dOut = registerFile(index)

46 / 49



Mixing Vecs and Bundles

▶ We can freely mix bundles and vectors
▶ When creating a vector with a bundle type, we need to

pass a prototype for the vector fields. Using our Channel,
which we defined above, we can create a vector of
channels with:

val vecBundle = Wire(Vec(8, new Channel()))

▶ A bundle may as well contain a vector

class BundleVec extends Bundle {

val field = UInt(8.W)

val vector = Vec(4,UInt(8.W))

}

47 / 49



Today’s Lab

▶ This is the start of the graded group work
▶ Part of your grade
▶ Please register your group in DTU Learn

▶ Binary to 7-segment decoder
▶ First part of your vending machine
▶ Just a single digit, only combinational logic
▶ Use the nice tester provided to develop the circuit
▶ Then synthesize it for the FPGA
▶ Test with switches
▶ Then add a counter running at 2 Hz
▶ Show a TA your working design
▶ Lab 5

48 / 49

https://github.com/schoeberl/chisel-lab/tree/master/lab5


Summary

▶ Waveform testing is the way to develop/debug
▶ Counters are important tools, e.g., to generate timing
▶ Finite-state machines are another tool of the trade
▶ Two types: Moore and Mealy
▶ A Chisel Vec is the hardware version of an array

49 / 49


