
Testing and Verification

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

March 6, 2025

1 / 44



Overview

▶ Review components
▶ A little bit of Scala (for testing)
▶ Debugging and testing
▶ Digital designers (sometimes) call testing verification

▶ To distinguish from final chip testing

2 / 44



DTU Chip Day

▶ Note the date: Tu 8 April afternoon
▶ Start with sandwiches and finish with beer
▶ Presentation of chip design and verification

work/companies in Denmark
▶ Several chip companies will present and are participating
▶ Opportunity to network for: theses with companies,

internship, student jobs

3 / 44



Direction of a Connection

▶ The flow on a Wire has a direction
▶ One end is the output/driver/source and the other end is

the input/sink
▶ Or producer and consumer
▶ An expression has also a direction:

▶ The right hand site produces a value
▶ The left hand site consumes the value

▶ sink := source1 + source2

▶ Like in Java and other programming languages
▶ Draw a figure

4 / 44



Last Chisel Lab (week 3)

▶ On components and small sequential circuits
▶ Registers plus combinational circuits

▶ Did you finish the exercises?
▶ Do the poll

▶ They are not mandatory, but helpful for preparation for the
final project

▶ Let’s look at solutions

5 / 44



Components are Modules

▶ Components are building blocks
▶ Like concrete, physical ICs

▶ Components have input and output ports (= pins)
▶ Organized as a Bundle
▶ Assigned to the field io

▶ We build circuits as a hierarchy of components
▶ You did a 4:1 multiplexer out of three 2:1 multiplexers

▶ In Chisel a component is called Module
▶ Components/Modules are used to organize the circuit

▶ Similar to using methods in Java
▶ But they are connected with wires

6 / 44



A Binary Watch

▶ Built out of discrete, digital components

Source: Diogo Sousa, public domain

7 / 44

https://commons.wikimedia.org/wiki/File:Relogio_binario.JPG
https://en.wikipedia.org/wiki/Public_domain


Let Us Build a Counter

▶ Counting from 0 up to 9
▶ Restart from 0
▶ Build it out of components
▶ We need:

▶ Adder
▶ Register
▶ Multiplexer

▶

▶ But these are very tiny components

8 / 44



An Adder (Component/Module)

 +

Adder

a

y

b

class Adder extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val y = Output(UInt(8.W))

})

io.y := io.a + io.b

}

9 / 44



A Register

d q

Register

class Register extends Module

{

val io = IO(new Bundle {

val d = Input(UInt(8.W))

val q = Output(UInt(8.W))

})

val reg = RegInit(0.U)

reg := io.d

io.q := reg

}

10 / 44



The Counter Schematics

Register

next
1

Adder
0

result

Count10

count

dout
a

b
y

d q

11 / 44



The Counter in Chisel
class Count10 extends Module {

val io = IO(new Bundle {

val dout = Output(UInt(8.W))

})

val add = Module(new Adder())

val reg = Module(new Register())

// the register output

val count = reg.io.q

// connect the adder

add.io.a := 1.U

add.io.b := count

val result = add.io.y

// connect the Mux and the register input

val next = Mux(count === 9.U, 0.U, result)

reg.io.d := next

io.dout := count

}

12 / 44



Summarize Components

▶ Think like concrete components (ICs)
▶ They have named pins (io.name)

▶ In hardware language these pins are often called ports
▶ Ports have a direction (input or output)

▶ They need to be created:
▶ val mc = Module(new MyComponent())

▶ and pins need to be connected with :=
▶ One module is special, as it is the top module

13 / 44



Chisel Main

▶ Create one top-level Module
▶ Invoke the emitVerilog() from the App
▶ Pass the top module (e.g., new Hello())
▶ Optional: pass some parameters (in an Array)
▶ Following code generates Verilog code for the Hello World

object Hello extends App {

emitVerilog(new Hello())

}

14 / 44



Scala

▶ Is object oriented
▶ Is functional
▶ Strongly typed with very good type inference
▶ Runs on the Java virtual machine
▶ Can call Java libraries
▶ Consider it as Java++

▶ Can almost be written like Java
▶ With a more lightweight syntax

15 / 44



Scala Hello World

//- start hello_scala

object HelloScala extends App {

println("Hello Chisel World!")

}

//- end

▶ Compile with scalac and run with scala
▶ You can even use Scala as a scripting language
▶ Or run with sbt run
▶ Show both

16 / 44



Scala Values and Variables

▶ Scala has two type of variables: vals and vars
▶ A val cannot be reassigned, it is a constant
▶ We use a val to name a hardware component in Chisel

// A value is a constant

val zero = 0

// No new assignment is possible

// The following will not compile

zero = 3

▶ Types are usually inferred
▶ But can be explicitly stated as follows

val number: Int = 42

17 / 44



Scala Variables

▶ A var can be reassigned, it is like a classic variable
▶ We use a var to write a hardware generator in Chisel

// We can change the value of a var variable

var x = 2

x = 3

18 / 44



Simple Loops

// Loops from 0 to 9

// Automatically creates loop value i

for (i <- 0 until 10) {

println(i)

}

▶ We can use a loop for testing

19 / 44



Scala for Loop for Circuit Generation

val regVec = Reg(Vec(8, UInt(1.W)))

regVec(0) := io.din

for (i <- 1 until 8) {

regVec(i) := regVec(i-1)

}

▶ for is Scala
▶ This loop generates several connections
▶ The connections are parallel hardware
▶ This is a shift register

20 / 44



Conditions

for (i <- 0 until 10) {

print(i)

if (i%2 == 0) {

println(" is even")

} else {

println(" is odd")

}

}

▶ Executed at runtime, when the circuit is created
▶ This is not a mlutplexer

21 / 44



Testing and Debugging

▶ Nobody writes perfect code ;-)
▶ We need a method to improve the code
▶ In Java we can simply print values:

▶ println("42");

▶ What can we do in hardware?
▶ Describe the whole circuit and hope it works?
▶ We can switch an LED on and off
▶ Test it with switches and LEDs in an FPGA

▶ We need some tools for debugging
▶ Writing testers in Chisel
▶ We test by running a simulation of the circuit

22 / 44

https://en.wikipedia.org/wiki/Debugging#/media/File:H96566k.jpg


ScalaTest

▶ Testing framework for Scala and Java
▶ Tests are placed under src/test/scala
▶ sbt understands ScalaTest
▶ Run all tests with:

sbt test

▶ When all (unit) tests are ok, the test suit passes
▶ A little bit funny syntax
▶ ChiselTest is based on ScalaTest

23 / 44



Testing with Chisel

▶ A test contains
▶ a device under test (DUT) and
▶ the testing logic

▶ Set input values with poke
▶ Advance the simulation with step
▶ Read the output values with peekInt
▶ Compare the values with expect
▶ Import following packages

import chisel3._

import chiseltest._

import org.scalatest.flatspec.AnyFlatSpec

24 / 44



An Example DUT

▶ A device-under test (DUT)
▶ Just 2-bit AND logic and equvicalence

class DeviceUnderTest extends Module {

val io = IO(new Bundle {

val a = Input(UInt(2.W))

val b = Input(UInt(2.W))

val out = Output(UInt(2.W))

val equ = Output(Bool())

})

io.out := io.a & io.b

io.equ := io.a === io.b

}

25 / 44



A ChiselTest

▶ Extends class AnyFlatSpec with ChiselScalatestTester
▶ Has the device-under test (DUT) as parameter of the
test() function

▶ Test function contains the test code
▶ Testing code can use all features of Scala
▶ Is placed in src/test/scala
▶ Is run with sbt test

26 / 44



A Simple Tester
▶ Just using println for manual inspection

class SimpleTest extends AnyFlatSpec with

ChiselScalatestTester {

"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

println("Result is: " +

dut.io.out.peekInt())

dut.io.a.poke(3.U)

dut.io.b.poke(2.U)

dut.clock.step()

println("Result is: " +

dut.io.out.peekInt())

}

}

}

27 / 44



A Real Tester

▶ Poke values and expect some output

class SimpleTestExpect extends AnyFlatSpec

with ChiselScalatestTester {

"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

dut.io.out.expect(0.U)

dut.io.a.poke(3.U)

dut.io.b.poke(2.U)

dut.clock.step()

dut.io.out.expect(2.U)

}

}

}

28 / 44



Generating Waveforms

▶ Waveforms are timing diagrams
▶ Good to see many parallel signals and registers
sbt "testOnly SimpleTest -- -DwriteVcd=1"

▶ Or setting an attribute for the test() function

test(new DeviceUnderTest)

.withAnnotations(Seq(WriteVcdAnnotation))

▶ IO signals and registers are dumped
▶ Option --debug puts all wires into the dump
▶ Generates a .vcd file in

test_run_dir/test-name

▶ Viewing with GTKWave or ModelSim

29 / 44



Display Waveform with GTKWave

▶ Run the tester: sbt test
▶ Locate the .vcd file in test run dir/...
▶ Start GTKWave
▶ Open the .vcd file with

▶ File – Open New Tab
▶ Select the circuit
▶ Drag and drop the interesting signals

30 / 44



Waveform Testing Demo

▶ Counter with a limit from last Chisel lab (Count6)
▶ Show Count6 tester: the original and the waveform
▶ Run it and look at waveform
▶ Add the solution
▶ Run again and reload the waveform

31 / 44



A Self-Running Circuit

▶ Count6 is a self-running circuit
▶ Needs no stimuli (poke)
▶ Just run for a few cycles

test(new Count6) { dut =>

dut.clock.step(20)

}

32 / 44



The WaveForm

▶ The complete test
▶ Note the .withAnnotations(Seq(WriteVcdAnnotation)

class Count6WaveSpec extends AnyFlatSpec with

ChiselScalatestTester {

"CountWave6 " should "pass" in {

test(new

Count6).withAnnotations(Seq(WriteVcdAnnotation))

{ dut =>

dut.clock.step(20)

}

}

}

33 / 44



Display Waveform with GTKWave

▶ Run the tester: sbt test
▶ Locate the .vcd file in test run dir/...
▶ Start GTKWave
▶ Open the .vcd file with

▶ File – Open New Tab
▶ Select the circuit
▶ Drag and drop the interesting signals

34 / 44



Vending Machine Testing

▶ I provide a minimal tester to generate a waveform
▶ Adding some coins and buying
▶ You can and shall extend this tester
▶ Better having more than one tester
▶ Show the waveform of the test

35 / 44



Printf Debugging

▶ We can print in the hardware during simulation
▶ Printing happens on the rising edge of the clock
▶ Good to see many parallel signals and registers
▶ printf anywhere in the module definition

class DeviceUnderTestPrintf extends Module {

val io = IO(new Bundle {

val a = Input(UInt(2.W))

val b = Input(UInt(2.W))

val out = Output(UInt(2.W))

})

io.out := io.a & io.b

printf("dut: %d %d %d\n", io.a, io.b, io.out)

}

36 / 44



Test Driven Development (TDD)

▶ Software development process
▶ Can we learn from SW development for HW design?

▶ Writing the test first, then the implementation
▶ Started with extreme programming

▶ Frequent releases
▶ Accept change as part of the development

▶ A path to Agile Hardware Development!
▶ Not used in its pour form

▶ Writing all those tests is simply considerer too much work
▶ But, write at least one test for each component

37 / 44



Regression Tests

▶ Tests are collected over time
▶ When a bug is found, a test is written to reproduce this bug
▶ Collection of tests increases
▶ Runs every night to test for regression

▶ Did a code change introduce a bug in the current code
base?

38 / 44



Continuous Integration (CI)

▶ Next logical step from regression tests
▶ Run all tests whenever code is changed
▶ Automate this with a repository, e.g., on GitHub
▶ Run CI on GitHub
▶ Show about this on the Chisel book

▶ Show sbt test
▶ Live demo on GitHub
▶ Mail from GitHub when it fails

▶ https://github.com/schoeberl/chisel-book/actions
▶ Maybe show how to set this up (it is easy ;)

▶ Start with the chisel-empty template
▶ Open it with IntelliJ
▶ Add action in GitHub (but it misses sbt setup)

39 / 44

https://github.com/schoeberl/chisel-book/actions
https://github.com/schoeberl/chisel-empty


Testing versus Debugging

▶ Debugging is during code development
▶ Waveform and println are easy tools for debugging
▶ Debugging does not help for regression tests
▶ Write small test cases for regression tests
▶ Keeps your code base intact when doing changes
▶ Better confidence in changes not introducing new bugs

40 / 44



Scala Build Tool (sbt)

▶ Downloads Scala compiler if needed
▶ Downloads dependent libraries (e.g., Chisel)
▶ Compiles Scala programs
▶ Executes Scala programs
▶ Does a lot of magic, maybe too much
▶ Compile and run with:

sbt "runMain simple.Example"

sbt run

sbt test

sbt "testOnly MySpec"

sbt compile

41 / 44



Build Configuration
▶ File name: build.sbt
▶ Defines needed Scala version
▶ Library dependencies

scalaVersion := "2.12.13"

scalacOptions ++= Seq("-feature",

"-language:reflectiveCalls")

resolvers ++=

Seq(Resolver.sonatypeRepo("releases"))

addCompilerPlugin("edu.berkeley.cs" %

"chisel3-plugin" % "3.5.0" cross

CrossVersion.full)

libraryDependencies += "edu.berkeley.cs" %%

"chisel3" % "3.5.0"

libraryDependencies += "edu.berkeley.cs" %%

"chiseltest" % "0.5.0"

42 / 44



Today’s Lab

▶ Testing a faulty multiplexer
▶ Do not look into the multiplexer code, find out with testing
▶ Use ChiselTest (the description has been updated)
▶ You have to start from scratch with the tester
▶ Show and discuss your testing code with a TA (or me)
▶ Lab 4
▶ And an additional challenge brought to you by Tjark

43 / 44

https://github.com/schoeberl/chisel-lab/tree/master/lab4


Summary

▶ Small sequential circuits are our building blocks
▶ We build larger circuits by combining components

(modules)
▶ There is no println in (real) hardware
▶ We need to write tests for the development
▶ Debugging versus regression tests

44 / 44


