
Components and Sequential Circuits

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

February 15, 2024

1 / 71

No Lecture in Week 5

▶ In two weeks (29/2)
▶ No lecture, but self study of timing material
▶ Paper and pencil exercises in the lab
▶ I am in a teaching workshop from our section (ESE)

2 / 71

Overview

▶ Vending machine project
▶ Repeat combinational building blocks
▶ Power user II
▶ Components and top-level
▶ Sequential circuits

3 / 71

Admin

▶ How is the lab work going so far? Too easy?
▶ Continue to organize yourself in groups of 2–3

▶ 1 is also OK
▶ You can ask for finding a group via slack (in channel

general)
▶ There is a group defined in Learn to register

▶ You have to show parts of the Vending Machine to a TA
▶ In the week that follows the exercise
▶ On time: full points, one week late: half the points

4 / 71

A Vending Machine from 1952

Source: Minnesota Historical Society, CC BY-SA 2.0

5 / 71

https://en.wikipedia.org/wiki/File:CandiesVendingMachine1952.jpg
https://creativecommons.org/licenses/by-sa/2.0

The Vending Machine

▶ Final project is a vending machine
▶ Detailed specification document will be given

▶ Put into the public in chisel-lab
▶ Inputs: coins, buy
▶ Display: price and current amount
▶ Output: release can or error
▶ Small challenge to multiplex the display
▶ State machine with data path is the brain of the VM
▶ Guided step by step over several weeks

6 / 71

Vending Machine Specification I

▶ Sell 1 item and not returning any money
▶ Set price with 5 switches (1–31 kr.)
▶ Display price on two 7-segment displays
▶ Accept 2 and 5 kr. (two push buttons)
▶ Display sum on two 7-segment displays

▶ Amount entered so far
▶ Does not return money, left for the next purchase
▶ Display decimal numbers

7 / 71

Vending Machine Specification II

▶ Push button Buy
▶ If not enough money, activate alarm as long as buy is

pressed
▶ If enough money, activate release item for as long as buy is

pressed and reduce sum by the price of the item
▶ Optional extras (for a 12)

▶ Supplement alarm by some visuals (e.g., blinking display)
▶ Count coins and display an alarm when compartment is full

(> 20 coins)
▶ Have some text scrolling on the display
▶ Supplement alarm with some audio
▶ Talk to the user (via serial port)
▶ ...
▶ Your ideas :-)

8 / 71

Design and Implementation

▶ Implementation shall be a state machine plus datapath
▶ Design your datapath on a sheet of paper
▶ Datapath

▶ Does add and subtract
▶ Contains a register to hold the sum
▶ Needs some multiplexer to operate

▶ Display needs multiplexing
▶ Implemented with some counters and a multiplexer

▶ Show each part of your design to a TA
▶ 7-segment decoder, 7-segment with a counter, display

multiplexer, complete vending machine

9 / 71

Vending Machine Design and Implementation Steps

▶ We start in week 6
▶ Hexadecimal to 7-segment decoder
▶ 7-segment display with a counter
▶ Multiplexed Seven-Segment Display
▶ Testing the Vending Machine
▶ Complete Vending Machine

▶ Show steps and your final working design to a TA

10 / 71

Final Report
▶ One report per group
▶ A single PDF

▶ Your group number is part of the file name (e.g., group7.pdf)
▶ Code as listing in an appendix (no .zip files)
▶ Hand in in DTU Learn

▶ Content
▶ Abstract
▶ Preface (Who did what)

1. Introduction and Problem Formulation
2. Analysis and Design
3. Implementation
4. Testing
5. Results
6. Discussion
7. Conclusion
▶ List of References
▶ Appendix: Chisel code

11 / 71

Questions on Final Project?

12 / 71

Combinational Circuit with Conditional Update

▶ Value first needs to be wrapped into a Wire
▶ Updates with the Chisel update operation :=
▶ With when we can express a conditional update
▶ The condition is an expression with a Boolean result
▶ The resulting circuit is a multiplexer
▶ The rule is that the last enabled assignment counts

▶ Here the order of statements has a meaning

val enoughMoney = Wire(Bool())

enoughMoney := false.B

when (coinSum >= price) {

enoughMoney := true.B

}

13 / 71

Comparison

▶ The usual operations (as in Java or C)
▶ Unusual equal and unequal operator symbols
▶ To keep the original Sala operators usable for references

▶ Operands are UInt and SInt
▶ Operands can be Bool for equal and unequal
▶ Result is Bool

>, >=, <, <=

===, =/=

14 / 71

Boolean Logical Operations

▶ Operands and result are Bool
▶ Logical NOT, AND, and OR

val notX = !x

val bothTrue = a && b

val orVal = x || y

15 / 71

The “Else” Branch

▶ We can express a form of “else”
▶ Note the . in .otherwise

val w = Wire(UInt())

when (cond) {

w := 1.U

} .otherwise {

w := 2.U

}

16 / 71

A Chain of Conditions

▶ To test for different conditions
▶ Select with a priority order
▶ The first expression that is true counts
▶ The hardware is a chain of multiplexers

val w = Wire(UInt())

when (cond) {

w := 1.U

} .elsewhen (cond2) {

w := 2.U

} .otherwise {

w := 3.U

}

2

cond2

3

w

cond

1

17 / 71

Default Assignment

▶ Practical for complex expressions
▶ Forgetting to assign a value on all conditions

▶ Would describe a latch
▶ Runtime error in Chisel

▶ Assign a default value is good practise

val w = WireDefault(0.U)

when (cond) {

w := 3.U

}

// ... and some more complex conditional

assignments

18 / 71

Logic Can Be Expressed as a Table

▶ Sometimes more convenient
▶ Still combinational logic (gates)
▶ Is converted to Boolean expressions
▶ Let the synthesize tool do the conversion!
▶ We use the switch statement

switch (sel) {

is ("b00".U) { result := "b0001".U}

is ("b01".U) { result := "b0010".U}

is ("b10".U) { result := "b0100".U}

is ("b11".U) { result := "b1000".U}

}

19 / 71

A Decoder

a1
Decoder

a0

b0

b1

b2

b3

▶ Converts a binary number of n bits to an m-bit signal,
where m ≤ 2n

▶ The output is one-hot encoded (exactly one bit is one)
▶ Building block for a m-way Mux
▶ Used for address decoding in a computer system
▶ Maybe of use for the display multiplexer

20 / 71

Truth Table of a Decoder

a b

00 0001
01 0010
10 0100
11 1000

21 / 71

An Encoder

a1
Encoder

a0

a2

a3

b0

b1

▶ Converts one-hot encoded signal
▶ To binary representation

22 / 71

Truth Table of an Encoder

a b

0001 00
0010 01
0100 10
1000 11
???? ??

▶ Only defined for one-hot input

23 / 71

Encoder in Chisel

▶ We cannot describe a function with undefined outputs
▶ We use a default assignment of "b00"

b := "b00".U

switch (a) {

is ("b0001".U) { b := "b00".U}

is ("b0010".U) { b := "b01".U}

is ("b0100".U) { b := "b10".U}

is ("b1000".U) { b := "b11".U}

}

24 / 71

Power User II

▶ Every craftsmen starts with good-quality tools
▶ “Tools amplify your talent”1

▶ The better your tools, the more productive you are
▶ The better you know them, the more productive you are

▶ IDEs (Eclipse, InelliJ) are nice, I love them too
▶ But we shall go beyond it
▶ Use tools (and write your own)
▶ Help with: google, man pages, or even plain –help (or -h)
▶ https://www.oreilly.com/learning/
ten-steps-to-linux-survival
▶ This is about command line tools, not just Linux

1The Pragmatic Programmer: From Journeyman to Master, by Andrew
Hunt and David Thomas

25 / 71

https://www.oreilly.com/learning/ten-steps-to-linux-survival
https://www.oreilly.com/learning/ten-steps-to-linux-survival

Power User II

▶ Use the command line, shell, terminal
▶ In Windows: PowerShell

▶ You may want to install the Linux subsystem
▶ Universal Unix commands (Windows, Mac, Linux)
▶ Navigating the file system:

▶ Change directory: cd
▶ Print working directory: pwd
▶ Make a directory: mkdir abc
▶ Create a file: echo test > abc.txt
▶ Show file content: cat abc.txt
▶ Remove a file: rm abc.txt

▶ Run your Chisel code with sbt run
▶ You used the terminal already from within IntelliJ ;-)

26 / 71

Power User II

▶ We talked about git last week
▶ To version your source
▶ Maybe hosting on GitHub
▶ Most teaching material is on GitHub
▶ Use git pull to update the lab material
▶ Show how to use it, now!

▶ Clone a repo: git clone path
▶ Get the newest version: git pull
▶ Further commands: git commit, push, log, status
▶ Overview of changes: gitk

▶ There are also GUI tools available, IntelliJ includes git
support

27 / 71

Structure With Bundles

▶ A Bundle to group signals
▶ Can be different types
▶ Defined by a class that extends Bundle
▶ Named fields as vals within the block
▶ Like a C struct or VHDL record

class Channel() extends Bundle {

val data = UInt(32.W)

val valid = Bool()

}

28 / 71

Using a Bundle

▶ Create it with new
▶ Wrap it into a Wire
▶ Field access with dot notation

val ch = Wire(new Channel())

ch.data := 123.U

ch.valid := true.B

val b = ch.valid

29 / 71

Wire, Reg, and IO

▶ UInt, SInt, and Bits are Chisel types, not hardware
▶ Wire, Reg, or IO generates hardware

▶ A Wire is a combinational circuit
▶ A Reg is a register
▶ A IO is a connection (for a module)

▶ Can wrap any Chisel type, also Bundle or Vec
▶ Give it a name by assigning it to a val

val number = Wire(UInt())

val reg = Reg(SInt())

30 / 71

Using = or :=

▶ Later assign or reassign a value or expression with :=

number := 10.U

reg := value - 3.U

▶ Note the small difference between = and :=
▶ May be confusing to start with

▶ Use = when creating a hardware object to give it a name
▶ Use := when assigning or reassigning to an existing

hardware object

31 / 71

Components/Modules

▶ Components/Modules are building blocks
▶ Component and module are two names for the same thing

▶ Components have input and output ports (= pins)
▶ Organized as a Bundle
▶ Wrapped into an IO()
▶ assigned to a field io

▶ We build circuits as a hierarchy of components
▶ In Chisel a component is called Module
▶ Components/Modules are used to organize the circuit

▶ Similar to classes and methods in Java

32 / 71

Input/Output Ports

▶ Ports are the interface to a module
▶ Ports are bundles with directions
▶ Ports are used to connect modules

class AluIO extends Bundle {

val function = Input(UInt(2.W))

val inputA = Input(UInt(4.W))

val inputB = Input(UInt(4.W))

val result = Output(UInt(4.W))

}

33 / 71

An Adder Module

 +

Adder

a

y

b

▶ Practically too simple, but for the slides

34 / 71

An Adder Module

▶ A class that extends Module
▶ Interface (port) is a Bundle, wrapped into an IO(), and

stored in the field io
▶ Circuit description in the constructor

class Adder extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val y = Output(UInt(8.W))

})

io.y := io.a + io.b

}

35 / 71

An Register Module

d q

Register

▶ Practically too simple, but for the slides

36 / 71

An Register Module

class Register extends Module {

val io = IO(new Bundle {

val d = Input(UInt(8.W))

val q = Output(UInt(8.W))

})

val reg = RegInit(0.U)

reg := io.d

io.q := reg

}

37 / 71

An Counter out of Modules

Register

next
1

Adder
0

result

Count10

count

dout
a

b
y

d q

38 / 71

An Counter out of Modules
class Count10 extends Module {

val io = IO(new Bundle {

val dout = Output(UInt(8.W))

})

val add = Module(new Adder())

val reg = Module(new Register())

// the register output

val count = reg.io.q

// connect the adder

add.io.a := 1.U

add.io.b := count

val result = add.io.y

// connect the Mux and the register input

val next = Mux(count === 9.U, 0.U, result)

reg.io.d := next

io.dout := count

}

39 / 71

Using Modules/Components

▶ Create with new and wrap into a Module()
▶ Interface port via the io field
▶ Note the assignment operator := on io fields
▶ Note the dot access to the field io and then the IO field

40 / 71

Example: Arithmetic Logic Unit

 ALU y

fn

b

a

▶ Also called ALU
▶ A central component of a microprocessor
▶ Two inputs, one function select, and an output
▶ Part of the datapath

41 / 71

Example: Arithmetic Logic Unit
class Alu extends Module {

val io = IO(new Bundle {

val a = Input(UInt(16.W))

val b = Input(UInt(16.W))

val fn = Input(UInt(2.W))

val y = Output(UInt(16.W))

})

// some default value is needed

io.y := 0.U

// The ALU selection

switch(io.fn) {

is(0.U) { io.y := io.a + io.b }

is(1.U) { io.y := io.a - io.b }

is(2.U) { io.y := io.a | io.b }

is(3.U) { io.y := io.a & io.b }

}

}

42 / 71

Nested Components Example

CompA

CompB CompD

CompC

43 / 71

Components CompA and CompB
class CompA extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val x = Output(UInt(8.W))

val y = Output(UInt(8.W))

})

// function of A

}

class CompB extends Module {

val io = IO(new Bundle {

val in1 = Input(UInt(8.W))

val in2 = Input(UInt(8.W))

val out = Output(UInt(8.W))

})

// function of B

} 44 / 71

Component CompC
class CompC extends Module {

val io = IO(new Bundle {

val inA = Input(UInt(8.W))

val inB = Input(UInt(8.W))

val inC = Input(UInt(8.W))

val outX = Output(UInt(8.W))

val outY = Output(UInt(8.W))

})

// create components A and B

val compA = Module(new CompA())

val compB = Module(new CompB())

// connect A

compA.io.a := io.inA

compA.io.b := io.inB

io.outX := compA.io.x

// connect B

compB.io.in1 := compA.io.y

compB.io.in2 := io.inC

io.outY := compB.io.out

}

45 / 71

Chisel Main

▶ Create one top-level Module
▶ Invoke the Chisel code emitter from the App
▶ Pass the top module (e.g., new Hello())
▶ Optional: pass some parameters (in an Array)
▶ Following code generates Verilog code for Hello World

object Hello extends App {

emitVerilog(new Hello())

}

46 / 71

Hello World in Chisel

class Hello extends Module {

val io = IO(new Bundle {

val led = Output(UInt(1.W))

})

val CNT_MAX = (50000000 / 2 - 1).U

val cntReg = RegInit(0.U(32.W))

val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.U

when(cntReg === CNT_MAX) {

cntReg := 0.U

blkReg := ˜blkReg

}

io.led := blkReg

}

47 / 71

Generated Verilog for Hello

▶ Hello is the top-level of our blinking LED
▶ No real need to read this code
▶ But pin assignment for the synthsis
▶ Additional pins: clock and reset
▶ User pin names with a leading io

module Hello(

input clock,

input reset,

output io_led

);

48 / 71

Generated Verilog for Hello

▶ We can find our two register definitions
▶ @... gives Chisel source and line number (e.g., 17)

reg [31:0] cntReg; // @[Hello.scala 17:23]

reg blkReg; // @[Hello.scala 18:23]

49 / 71

Generated Verilog for Hello

▶ The increment and IO connection

wire [31:0] _cntReg_T_1 = cntReg + 32’h1; // @[Hello.scala 20:20]

assign io_led = blkReg; // @[Hello.scala 25:10]

50 / 71

Generated Verilog for Hello
▶ Verilog register code, including comparison against

maximum value

always @(posedge clock) begin

if (reset) begin // @[Hello.scala 17:23]

cntReg <= 32’h0; // @[Hello.scala 17:23]

end else if (cntReg == 32’h2faf07f) begin // @[Hello.scala 21:28]

cntReg <= 32’h0; // @[Hello.scala 22:12]

end else begin

cntReg <= _cntReg_T_1; // @[Hello.scala 20:10]

end

if (reset) begin // @[Hello.scala 18:23]

blkReg <= 1’h0; // @[Hello.scala 18:23]

end else if (cntReg == 32’h2faf07f) begin // @[Hello.scala 21:28]

blkReg <= ˜blkReg; // @[Hello.scala 23:12]

end

end

51 / 71

Verilog Generation Summary

▶ Verilog is generated for synthesis
▶ We do not need to read it
▶ Just pins are interesting
▶ Additional clock and reset
▶ Pin names with additional io

52 / 71

File Organization in Scala/Chisel

▶ A Scala file can contain several classes (and objects)
▶ For large classes use one file per class with the class name
▶ Scala has packages, like Java
▶ Use folders with the package names for file organization
▶ sbt looks into current folder and src/main/scala/
▶ Tests shall be in src/test/scala/

53 / 71

File Organization in Scala/Chisel

project

src

main

scala

package

sub-package

test

scala

package

target

generated

54 / 71

What is a Minimal Chisel Project?

▶ Scala class (e.g., Hello.scala)
▶ Build info in build.sbt for sbt:

scalaVersion := "2.12.13"

scalacOptions ++= Seq(

"-feature",

"-language:reflectiveCalls",

)

55 / 71

Minimal Chisel Project Cont.

// Chisel 3.5

addCompilerPlugin("edu.berkeley.cs" %

"chisel3-plugin" % "3.5.0" cross

CrossVersion.full)

libraryDependencies += "edu.berkeley.cs" %%

"chisel3" % "3.5.0"

libraryDependencies += "edu.berkeley.cs" %%

"chiseltest" % "0.5.0"

56 / 71

Show It

▶ The absolute minimum is two files
▶ build.sbt
▶ A single .scala file

57 / 71

Sequential Building Blocks

▶ Contain a register
▶ Plus combinational circuits

D Q

clock

val q = RegNext(d)

58 / 71

Register With Reset

D Q
init

reset

data

val valReg = RegInit(0.U(4.W))

valReg := inVal

59 / 71

Timing Diagram of the Register with Reset

clock

reset

inVal 3 5 2 7 4

valReg 0 5 2 7

1 2 3 4 5 6 7

▶ Also called waveform diagram
▶ Logic function over time
▶ Can be used to describe a circuit function
▶ Useful for debugging

60 / 71

Register with Enable

D Q

enable

data

▶ Only when enable true is a value is stored

val enableReg = Reg(UInt(4.W))

when (enable) {

enableReg := inVal

}

61 / 71

A Register with Reset and Enable

▶ We can combine initialization and enable

val resetEnableReg = RegInit(0.U(4.W))

when (enable) {

resetEnableReg := inVal

}

▶ A register can also be part of an expression
▶ What does the following circuit do?

val risingEdge = din & !RegNext(din)

62 / 71

A Register with an Adder is a Counter

 +

1

▶ Is a free running counter
▶ 0, 1, ... 14, 15, 0, 1, ...

val cntReg = RegInit(0.U(4.W))

cntReg := cntReg + 1.U

63 / 71

A Counter with a Mux

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === 9.U, 0.U, cntReg + 1.U)

▶ This counter counts from 0 to 9
▶ And starts from 0 again after reaching 9

▶ Starting from 0 is common in computer engineering
▶ A counter is the hardware version of a for loop
▶ Often needed

64 / 71

Counting Events

 +

1

event

val cntEventsReg = RegInit(0.U(4.W))

when(event) {

cntEventsReg := cntEventsReg + 1.U

}

65 / 71

Counting Up and Down

▶ Up:

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.U

when(cntReg === N) {

cntReg := 0.U

}

▶ Down:

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.U) {

cntReg := N

}

66 / 71

Common Acronyms

ADC analog-to-digital converter
ALU arithmetic and logic unit

ASIC application-specific integrated circuit
Chisel constructing hardware in a Scala embedded

language
CISC complex instruction set computer
CRC cyclic redundancy check
DAC digital-to-analog converter
DFF D flip-flop, data flip-flop
DMA direct memory access

DRAM dynamic random access memory
FF flip-flop

67 / 71

Common Acronyms II

FIFO first-in, first-out
FPGA field-programmable gate array

HDL hardware description language
HLS high-level synthesis

IC instruction count
IDE integrated development environment

IO input/output
ISA instruction set architecture
JDK Java development kit
JIT just-Iin-time

JVM Java virtual machine
LC logic cell

68 / 71

Common Acronyms III

LRU least-recently used
MMIO memory-mapped IO
MUX multiplexer

OO object oriented
RISC reduced instruction set computer

SDRAM synchronous DRAM
SRAM static random access memory

TOS top-of stack
UART universal asynchronous receiver/transmitter
VHDL VHSIC hardware description language

VHSIC very high speed integrated circuit

69 / 71

Lab Today

▶ Components and Small Sequential Circuits
▶ Lab 3 Page
▶ Each exercise contains a test, which initially fails
▶ sbt test runs them all

▶ To just run a single test, run e.g.,
sbt "testOnly SingleTest"

When all tests succeed your are (almost) done ;-)
▶ Additional some drawing exercise
▶ Do them, they will be part of the exam!

70 / 71

https://github.com/schoeberl/chisel-lab/tree/master/lab3

Summary

▶ Vending machine is your final project
▶ The vending machine and the report are part of your grade
▶ A digital circuit is organized in components
▶ Components have ports with directions
▶ Sequential circuits are combinations of registers with

combinational circuits

71 / 71

