
Basic Digital Circuits in Chisel

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

February 7, 2024

1 / 58

Overview

▶ Quick recap of last lecture
▶ If something is unclear, please ask!

▶ Basic digital building blocks
▶ And the coding of it in Chisel
▶ Some coding style

2 / 58

The Digital Abstraction

▶ Just two values: 0 and 1,
or low and high

▶ Represented as voltage
▶ Digital signals tolerate

noise
▶ Digital Systems are simple,

just:
▶ Combinational circuits

and
▶ Registers

AND

OR

b
a

c
logic

D Q

clock

3 / 58

Chisel

▶ A hardware construction language
▶ Constructing Hardware In a Scala Embedded Language
▶ If it compiles, it is synthesisable hardware
▶ Say goodby to your unintended latches

▶ Chisel is not a high-level synthesis language
▶ Single source for two targets

▶ Cycle accurate simulation (testing)
▶ Verilog for synthesis

▶ Embedded in Scala
▶ Full power of Scala available
▶ But to start with, no Scala knowledge needed

▶ Developed at UC Berkeley

4 / 58

Chisel is Part of the C Language Family

C

Verilog

SystemVerilog

C++

SystemC

Java

Scala

Chisel

C#

5 / 58

Tool Flow for Chisel Defined Hardware

Hello.scala

scalac

Hello.class

Chisel
JVM

Hello.fir

scala.libchisel3.lib

Verilog
Emitter

JVM
Treadle

JVM

Hello.vHello.vcd

FIRRTL
JVM

Chisel
Tester
JVM

good/bad

GTKWave Circuit
Synthesis

Hello.bit

6 / 58

Signal/Wire Types and Width

▶ All types in hardware are a collection of bits
▶ The base type in Chisel is Bits
▶ UInt represents an unsigned integer
▶ SInt represents a signed integer (in two’s complement)
▶ The number of bits is the width
▶ The width written as number followed by .W

Bits(8.W)

UInt(8.W)

SInt(10.W)

7 / 58

Constants

▶ Constants can represent signed or unsigned numbers
▶ We use .U and .S to distinguish

0.U // defines a UInt constant of 0

-3.S // defines a SInt constant of -3

▶ Constants can also be specified with a width

3.U(4.W) // An 4-bit constant of 3

▶ Use the string notation for a different base

"hff".U // hexadecimal representation of

255

"o377".U // octal representation of 255

"b1111_1111".U // binary representation of 255

8 / 58

Combinational Circuits

▶ Chisel uses Boolean operators, similar to C or Java
▶ & is the AND operator and | is the OR operator
▶ The following code is the same as the schematics
▶ val logic gives the circuit/expression the name logic
▶ That name can be used in following expressions

AND

OR

b
a

c
logic

val logic = (a & b) | c

9 / 58

Arithmetic and Logic Operations

▶ Same as in Java or C
▶ But this is hardware

val add = a + b // addition

val sub = a - b // subtraction

val neg = -a // negate

val mul = a * b // multiplication

val div = a / b // division

val mod = a % b // modulo operation

val and = a & b // bitwise and

val or = a | b // bitwise or

val xor = a ˆ b // bitwise xor

val not = ˜a // bitwise negation

10 / 58

Operators

▶ Operators precedence is the same as in Java
▶ E.g., * has precedence over +
▶ But different in VHDL or Verilog
▶ Use parentheses when unsure (especially for logical

expressions)
▶ + and - is relatively cheap
▶ * is expensive, know what you do
▶ / and % is VERY expensive, usually no direct use in

hardware
▶ Implement as a multi-cycle operation

11 / 58

Wires

▶ A wire (a signal) can be first defined
▶ And later assigned an expression with :=

val w = Wire(UInt())

w := a & b

12 / 58

Subfields and Concatenation

A single bit can be extracted as follows:

val sign = x(31)

A subfield can be extracted from end to start position:

val lowByte = largeWord(7, 0)

Bit fields are concatenated with Cat:

val word = highByte ## lowByte

13 / 58

A Multiplexer

a
y

sel

b

T

F

▶ A Multiplexer selects between alternatives
▶ So common that Chisel provides a construct for it
▶ Selects a when sel is true.B otherwise b

val result = Mux(sel, a, b)

14 / 58

Register

▶ A register is a collection of flip-flops
▶ Updated on the rising edge of the clock
▶ May be set to a value on reset

D Q

reset

d

0
q

clock

15 / 58

A Register with Reset

Following code defines an 8-bit register, initialized with 0 at
reset:

val reg = RegInit(0.U(8.W))

An input is connected to the register with the := update
operator and the output of the register can be used just with the
name in an expression:

reg := d

val q = reg

16 / 58

Reminder: We Construct Hardware

▶ Chisel code looks much like Java code
▶ But it is not a program in the usual sense
▶ It represents a circuit
▶ We should be able to draw that circuit
▶ The “program” constructs the circuit
▶ All statements are “executed” in parallel
▶ Statement order has mostly no meaning

17 / 58

Interlude

▶ Before we look at new material
▶ Sprinkle in some info on general development tools
▶ Get better at using your computer
▶ Learn some tools
▶ Don’t be afraid of the command line ;-)

▶ Show sbt usage
▶

▶

▶ Engineers are power users!

18 / 58

What is git?

▶ git is a distributed version-control system
▶ What does that mean?
▶ Wikipedia on git

▶ To manage source code or other documents
▶ Track changes in computer files
▶ Created by Linus Torvalds for Linux kernel development
▶ Good tool for cooperation
▶ Mostly used at the command line
▶ But graphical clients are available (i.e., with a GUI)
▶ Show the CLI commands

19 / 58

https://en.wikipedia.org/wiki/Git

What is GitHub?

▶ GitHub is a git repository server
▶ GitHub is a classic startup, based in San Francisco
▶ Acquired 2018 by Microsoft for $7.5 billion
▶ Many open-source projects are on GitHub (e.g., Chisel)

▶ 372 million repositories, 28 million public repositories, and
100 million developers

▶ Our DE2 material is hosted on GitHub
▶ Lab material (you have used it)
▶ The slides
▶ The Chisel book
▶ see https://github.com/schoeberl
▶ Everyone can contribute via GitHub ;-)

20 / 58

https://github.com/
https://github.com/schoeberl

Comment on Character Usage and Language

▶ Computers used for long time ASCII characters
▶ Show ASCII table
▶ Does NOT contain the special letters of DK, SE, AT,...
▶ Only a subset of ASCII was allowed for identifiers
▶ Languages such as Java or Scala are now more tolerant

▶ You could use Chinese characters for your Java program!
▶ Please do not use any special characters

▶ Also not in file names
▶ Programming is international

▶ Use English identifiers and comments
▶ Avoid spaces in file names and folders

21 / 58

http://www.asciitable.com/

Coding Style

▶ Similar to Java
▶ Use readable, meaningful names

▶ E.g., sum instead of y
▶ Use camelCase for identifiers
▶ Modules (classes) start with uppercase

▶ E.g., VendingMachine
▶ Mark you register with a postfix Reg

▶ E.g., countReg
▶ Use consistent indentation

▶ Chisel style is 2 spaces (blanks)
▶ Use ASCII only ;-)

22 / 58

Combinational Circuits

▶ Simplest is a Boolean expression
▶ Assigned a name (e)
▶ This expression can be reused in another expression

val e = (a & b) | c

23 / 58

Fixed Expression

▶ Expression is fixed
▶ Trying to reassign with = results in an error
▶ Trying the Chisel conditional update := results in runtime

error

val e = (a & b) | c

e := c & b

24 / 58

Combinational Circuit with Conditional Update

▶ Chisel supports conditional update
▶ Value first needs to be wrapped into a Wire
▶ Updates with the Chisel update operation :=
▶ With when we can express a conditional update
▶ The resulting circuit is a multiplexer
▶ The rule is that the last enabled assignment counts

▶ Here the order of statements has a meaning

val w = Wire(UInt())

w := 0.U

when (cond) {

w := 3.U

}

25 / 58

The “Else” Branch

▶ We can express a form of “else”
▶ Note the . in .otherwise

val w = Wire(UInt())

when (cond) {

w := 1.U

} .otherwise {

w := 2.U

}

26 / 58

A Chain of Conditions

▶ To test for different conditions
▶ Select with a priority order
▶ The first that is true counts
▶ The hardware is a chain of multiplexers

val w = Wire(UInt())

when (cond) {

w := 1.U

} .elsewhen (cond2) {

w := 2.U

} .otherwise {

w := 3.U

}

2

cond2

3

w

cond

1

27 / 58

Default Assignment

▶ Practical for complex expressions
▶ Forgetting to assign a value on all conditions

▶ Would describe a latch
▶ Runtime error in Chisel

▶ Assign a default value is good practise

val w = WireDefault(0.U)

when (cond) {

w := 3.U

}

// ... and some more complex conditional

assignments

28 / 58

Logic Can Be Expressed as a Table

▶ Sometimes more convenient
▶ Still combinational logic (gates)
▶ Is converted to Boolean expressions
▶ Let the synthesize tool do the conversion!
▶ We use the switch statement

result := 0.U

switch(sel) {

is (0.U) { result := 1.U}

is (1.U) { result := 2.U}

is (2.U) { result := 4.U}

is (3.U) { result := 8.U}

}

29 / 58

A Decoder

a1
Decoder

a0

b0

b1

b2

b3

▶ Converts a binary number of n bits to an m-bit signal,
where m ≤ 2n

▶ The output is one-hot encoded (exactly one bit is one)
▶ Building block for a m-way Mux
▶ Used for address decoding in a computer system

30 / 58

Truth Table of a Decoder

a b

00 0001
01 0010
10 0100
11 1000

▶ Does this look like the table we have seen?

31 / 58

Decoder in Chisel

▶ Binary strings are a clearer representation

switch (sel) {

is ("b00".U) { result := "b0001".U}

is ("b01".U) { result := "b0010".U}

is ("b10".U) { result := "b0100".U}

is ("b11".U) { result := "b1000".U}

}

32 / 58

An Encoder

a1
Encoder

a0

a2

a3

b0

b1

▶ Converts one-hot encoded signal
▶ To binary representation

33 / 58

Truth Table of an Encoder

a b

0001 00
0010 01
0100 10
1000 11
???? ??

▶ Only defined for one-hot input

34 / 58

Encoder in Chisel

▶ We cannot describe a function with undefined outputs
▶ We use a default assignment of "b00"

b := "b00".U

switch (a) {

is ("b0001".U) { b := "b00".U}

is ("b0010".U) { b := "b01".U}

is ("b0100".U) { b := "b10".U}

is ("b1000".U) { b := "b11".U}

}

35 / 58

An Arbiter for Decisions

r1
Arbiter

r0

r2

r3

g0

g1

g2

g3

▶ Selects one winner for the request of a shared resource
▶ Here: 4 request lines, 4 grant lines
▶ The arbiter grants only a single request
▶ E.g., a request input of 0101 will result in a grant output of
0001

▶ This is a priority arbiter (unfair)

36 / 58

The Arbiter Schematic
r0

r1
g1

g0

r2
g2

r3
g3

37 / 58

The Arbiter in Chisel

▶ Example for a 3-bit aribter

val grant = VecInit(false.B, false.B, false.B)

val notGranted = VecInit(false.B, false.B)

grant(0) := request(0)

notGranted(0) := !grant(0)

grant(1) := request(1) && notGranted(0)

notGranted(1) := !grant(1) && notGranted(0)

grant(2) := request(2) && notGranted(1)

38 / 58

Priority Encoder

r1
Arbiter

r0

r2

r3

g0

g1

g2

g3

Encoder
d0

d1

▶ Combining the arbiter with the encoder
▶ Solves the problem with multiple bits set for the encoder
▶ The highest-priority bit from the input is used for the

encoding

39 / 58

Comperator

a

Comparator

b

equ

gt

a == b

a > b

▶ Needed as component on its own?
▶ It is just two lines of Chisel code

val equ = a === b

val gt = a > b

40 / 58

Register (Again)

▶ Sequential building blocks
▶ Contains a register
▶ Plus combinational circuits

D Q

clock

val q = RegNext(d)

41 / 58

Register in Two Steps

val delayReg = Reg(UInt(4.W))

delayReg := delayIn

42 / 58

Register With Reset

D Q
init

reset

data

val valReg = RegInit(0.U(4.W))

valReg := inVal

43 / 58

Timing Diagram of the Register with Reset

clock

reset

inVal 3 5 2 7 4

regVal 0 5 2 7

1 2 3 4 5 6 7

▶ Also called waveform diagram
▶ Logic function over time
▶ Can be used to describe a circuit function
▶ Useful for debugging

44 / 58

Register with Enable

D Q

enable

data

▶ Only when enable true is a value is stored

val enableReg = Reg(UInt(4.W))

when (enable) {

enableReg := inVal

}

45 / 58

Timing Diagram for an Enable Register

clock

enable

inVal 2 3 5 6 2 7 4

regEnable 2 3 5 2 7

1 2 3 4 5 6 7

46 / 58

More on Register

▶ We can combine initialization and enable

val resetEnableReg = RegInit(0.U(4.W))

when (enable) {

resetEnableReg := inVal

}

▶ A register can also be part of an expression
▶ What does the following circuit do?

val risingEdge = din & !RegNext(din)

47 / 58

Combine a Register with an Adder

 +

1

▶ Is a free running counter
▶ 0, 1, ... 14, 15, 0, 1, ...

val cntReg = RegInit(0.U(4.W))

cntReg := cntReg + 1.U

48 / 58

A Counter

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === 9.U, 0.U, cntReg + 1.U)

▶ This counter counts from 0 to 9
▶ And starts from 0 again after reaching 9

▶ Starting from 0 is common in computer engineering
▶ A counter is the hardware version of a for loop

▶ But runs forever (over and over again)
▶ Often needed
▶ Can we draw the schematic?

49 / 58

Counting Events

 +

1

event

val cntEventsReg = RegInit(0.U(4.W))

when(event) {

cntEventsReg := cntEventsReg + 1.U

}

50 / 58

Structure With Bundles

▶ A Bundle to groups signals
▶ Can be different types
▶ Defined by a class that extends Bundle
▶ List the fields as vals within the block

class Channel() extends Bundle {

val data = UInt(32.W)

val valid = Bool()

}

51 / 58

Using a Bundle

▶ Create it with new
▶ Wrap it into a Wire
▶ Field access with dot notation

val ch = Wire(new Channel())

ch.data := 123.U

ch.valid := true.B

val b = ch.valid

52 / 58

A Collection of Signals with Vec

▶ Chisel Vec is a collection of signals of the same type
▶ The collection can be accessed by an index
▶ Similar to an array in other languages

val v = Wire(Vec(3, UInt(4.W)))

53 / 58

Using a Vec

v(0) := 1.U

v(1) := 3.U

v(2) := 5.U

val index = 1.U(2.W)

val a = v(index)

▶ Reading from an Vec is a multplexer
▶ We can put a Vec into a Reg

val registerFile = Reg(Vec(32, UInt(32.W)))

An element of that register file is accessed with an index and
used as a normal register.

registerFile(index) := dIn

val dOut = registerFile(index)

54 / 58

Mixing Vecs and Bundles

▶ We can freely mix bundles and vectors
▶ When creating a vector with a bundle type, we need to

pass a prototype for the vector fields. Using our Channel,
which we defined above, we can create a vector of
channels with:

val vecBundle = Wire(Vec(8, new Channel()))

▶ A bundle may as well contain a vector

class BundleVec extends Bundle {

val field = UInt(8.W)

val vector = Vec(4,UInt(8.W))

}

55 / 58

Lab Today

▶ Combinational circuits in Chisel
▶ Lab 2 Page
▶ Each exercise contains a test, which initially fails
▶ sbt test runs them all

▶ To just run a single test, run e.g.,
sbt "testOnly MajorityPrinter"

When all test succeed your are done ;-)
▶ Components contain a comment where you shall add your

implementation
▶ The initial majority example has an optional

implementation in an FPGA

56 / 58

https://github.com/schoeberl/chisel-lab/tree/master/lab2

Summary

▶ Think in hardware
▶ Draw “boxes”

▶ Combinational logic (= Boolean function)
▶ Logical and arithmetic expressions
▶ Conditional update (when)
▶ Function tables with switch
▶ Large multiplexer with a Vec

▶ Registers
▶ Define as Reg, RegNext, or RegInit

57 / 58

Summary

▶ We looked at basic digital circuit blocks
▶ Now you know all you need to build any digital circuit!

▶ Digital controller
▶ MP3 player
▶ Microprocessor
▶ Data center accelerator
▶ ...

▶ Will show you some constructs for a more elegant style

58 / 58

