
Digital Electronics 2: Introduction

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

February 1, 2024

1 / 68

Overview

▶ Motivation and the digital abstraction
▶ Course organization
▶ Languages for digital hardware design
▶ A first round of Chisel
▶ Tools and tool setup
▶ Lab: a hardware “Hello World”

2 / 68

A BIG Chip

▶ https://singularityhub.com/2019/08/26/
this-giant-ai-chip-is-the-size-of-an-ipad-and-holds-1-2-trillion-transistors/

▶ 1.2 × 1012 transistors
▶ If you design 1 gate (= 4 transistors) per second

▶ It takes you 10 thousand years!
▶ This calls for some abstraction

3 / 68

https://singularityhub.com/2019/08/26/this-giant-ai-chip-is-the-size-of-an-ipad-and-holds-1-2-trillion-transistors/
https://singularityhub.com/2019/08/26/this-giant-ai-chip-is-the-size-of-an-ipad-and-holds-1-2-trillion-transistors/

Digital Systems are Everywhere

▶ Digital systems are all over in our live
▶ No more analog media
▶ CD, mobile phone, TV, DVD,... all digital now
▶ Analog circuits only at the edge
▶ The rest is processed in digital
▶ If performance allows, functions are moved to software
▶ But processor speedup has slowed down
▶ Algorithms are moved back into hardware

4 / 68

FPGAs in the Cloud

▶ High performance algorithm in an FPGA
▶ An FPGA in the cloud
▶ Intel offers FPGAs for servers

▶ There was some reason why Intel bought Altera
▶ And AMD bought Xilinx

▶ We need digital designers to make this work
▶ A good time to be a digital designer

5 / 68

https://aws.amazon.com/ec2/instance-types/f1/
https://www.intel.com/content/www/us/en/products/docs/storage/programmable/applications/cloud.html

The Digital Abstraction

▶ Just two values: 0 and 1,
or low and hight

▶ Represented as voltage
▶ Digital signals tolerate

noise
▶ Digital Systems are simple,

just:
▶ Combinational circuits

and
▶ Registers

AND

OR

b
a

c
logic

D Q

clock

6 / 68

Hardware Design in DK

▶ Demant (former Oticon)
▶ WSAudiology (former Widex)
▶ GN ReSound
▶ Microchip
▶ Intel (former Altera) Denmark
▶ SyoSil
▶ Comcores
▶ Synopsys
▶ Napatech
▶ Teledyn
▶ and some more...
▶

▶ They are all hiring

7 / 68

Digital Design within an EE Master

▶ Not an obvious choice, as there is no specialization in
digital systems

▶ Select some of the following courses
▶ 02155: Computer Architecture and Engineering
▶ 02203: Design of Digital Systems
▶ 02211: Advanced Computer Architecture
▶ 02205: VLSI Design
▶ 02217: Design of Arithmetic Processors
▶ 02204: Design of Asynchronous Circuits
▶ 02209: Test of Digital Systems

8 / 68

Computer Engineering Education at DTU

▶ Between hardware (EE) and software (CS)
▶ Very well payed jobs :-)
▶ Now a new BSc in CE is available at DTU
▶ You can also start with a Bsc in EE
▶ Specialization in Indlejrede systemer og programmering

▶ 02155: Computer Architecture and Engineering
▶ 02105: Algoritmer og datastrukturer

▶ Take some of the new CE courses
▶ Continue as MSc. in Computer Science and Engineering
▶ Specialization in

▶ Digital Systems

9 / 68

Web Resources

▶ DTU Learn
▶ Group building
▶ Project report hand in

▶ Course website
▶ General information, starting point

▶ Lab website
▶ Lab material on GitHub

▶ Chisel book website
▶ Download the free PDF

10 / 68

https://learn.inside.dtu.dk/d2l/home
http://www2.imm.dtu.dk/courses/02139/
https://github.com/schoeberl/chisel-lab
http://www.imm.dtu.dk/~masca/chisel-book.html

Organization and Workload

▶ Usually 2 hours lectures and 2 hours supervised lab
▶ 5 ECTS is equivalent to 9 hours per week
▶ That means 5 hours work on your own

▶ Do some reading, prepare for the lecture and lab
▶ Get the tools installed on your laptop
▶ You have an FPGA board, experiment with it

▶ You will learn a lot in this course, it will make you a better:
▶ engineer
▶ hardware designer
▶ programmer, and
▶ computer user in general

▶ Try to have fun with building stuff that is real!

11 / 68

Important Help

▶ We have three great TAs for this semester
▶ Hatem Amer Ghaith
▶ Lasse Moelkjaer Slipsager
▶ Tjark Petersen
▶ You will meet them in the lab
▶ We are online on Slack as well

12 / 68

Lab Work

▶ A Vending Machine
▶ At the end it shall run in your FPGA board
▶ I am a big fan of running stuff in real hardware

▶ I know many groups have only one physical FPGA board
▶ A lot can be done in simulation
▶ I developed a simulation of the Basys3 board (during first

lockdown)
▶ I assume you will find a solution for file sharing

▶ GitHub is a popular one for source code
▶ Can also be used if you plan to write your report in LaTeX

13 / 68

Communication and Getting Help

▶ Several sources of information:
▶ The Internet, Google, and Stackoverflow
▶ Your fellow students (e.g., via Slack)
▶ The TAs: Hatem, Lasse, and Tjark
▶ Me

▶ We will use Slack for easy communication (if ok for you)
▶ https://de2024-workspace.slack.com

▶ You can always just knock on my door or shoot me an
email

▶ Official info will be sent via DTU Learn email

14 / 68

https://de2024-workspace.slack.com

Cheating and Plagiarism

▶ It is ok and good practice to discuss problems and
solutions with your fellow students

▶ But you need to hand in your own solution
▶ Copying stuff or offering stuff for copying is cheating
▶ Copying material from somewhere is plagiarism and

copyright violation
▶ Cheating is handled quite rigorous at DTU, you might get

expelled
▶ Using source code control (GitHub) is good practice
▶ However, keep it private. Otherwise you might contribute to

cheating

15 / 68

AI, ChatGPT, and Co.

▶ DTU has changed their rules
▶ I do not know the exact rules currently
▶ I, as teacher, can override those rules

▶ AI is part of our live, it is just another tool in our toolbox
▶ I use ChatGPT and copilot
▶ You are allowed to use AI as well
▶ However, be careful to lear some coding by yourself (exam

without Internet)
▶ If you use it:

▶ Cite it in your report
▶ Write a short section on reflecting how useful it was

16 / 68

This is an Open-Access/Open-Source Course

▶ Almost all material is public visible
▶ Slides are open source
▶ Lab material is open source
▶ The Chisel book is open source
▶ Hosted on GitHub

▶ You can contribute with a pull request
▶ Becoming an author of this course :-)

17 / 68

Lab Work

▶ Some paper and pencil exercises
▶ Two personal hand-ins of typical exam problems
▶ Most work on designing digital circuits with a hardware

description language
▶ Builds up to the final project: a vending machine
▶ The hand-ins, vending machine, and the report are graded

18 / 68

Questions?

▶ On lectures
▶ On the group/lab work

19 / 68

A Vending Machine from 1952

Source: Minnesota Historical Society, CC BY-SA 2.0

20 / 68

https://en.wikipedia.org/wiki/File:CandiesVendingMachine1952.jpg
https://creativecommons.org/licenses/by-sa/2.0

The Vending Machine

▶ Final project is a vending machine
▶ Inputs: coins, buy
▶ Display: price and current amount
▶ Output: release can or error
▶ Small challenge to multiplex the display
▶ State machine with data path is the brain of the VM
▶ Will be guided step by step over several weeks
▶ More details next week
▶ VM in hardware versus VM in software

▶ This is an exercise that you can solve with reasonable effort

21 / 68

Motivating Example for Chisel:
Lipsi: Probably the Smallest Processor in the World

▶ Tiny processor
▶ Simple instruction set
▶ Shall be small

▶ Around 200 logic cells, one FPGA memory block
▶ Hardware described in Chisel
▶ Available at https://github.com/schoeberl/lipsi
▶ Usage

▶ Utility processor for small stuff
▶ Could be used for your vending machine
▶ In teaching for introduction to computer architecture

▶ The design took place on the island Lipsi

22 / 68

https://github.com/schoeberl/lipsi

The Design of Lipsi on Lipsi

23 / 68

Lipsi Implementation

▶ Hardware described in Chisel
▶ Tester in Chisel
▶ Assembler in Scala

▶ Core case statement about 20 lines
▶ Reference design of Lipsi as software simulator in Scala
▶ Testing:

▶ Self testing assembler programs
▶ Comparing hardware with a software simulator

▶ All in a single programming language!
▶ All in a single program
▶ How much work is this?

24 / 68

Chisel is Productive

▶ All coded and tested in less than 14 hours!

▶ The hardware in Chisel
▶ Assembler in Scala
▶ Some assembler programs (blinking LED)
▶ Simulation in Scala
▶ Two testers

▶ BUT, this does not include the design (done on paper)

25 / 68

Motivating Example: Lipsi, a Tiny Processor

▶ Show in IntelliJ (if beamer allows)

26 / 68

The Slides are Online

▶ http://www2.imm.dtu.dk/courses/02139/

▶ https://github.com/schoeberl/chisel-book/tree/
master/slides

27 / 68

http://www2.imm.dtu.dk/courses/02139/
https://github.com/schoeberl/chisel-book/tree/master/slides
https://github.com/schoeberl/chisel-book/tree/master/slides

10 Minutes Break

28 / 68

Why Chisel Instead of VHDL/Verilog/SystemVerilog?

▶ Company O does Verilog, company W does VHDL
▶ Why Chisel?

▶ We learn principles of digital design, not tools
▶ We pick a language that is modern and productive

▶ When knowing principles, switching the language is a
matter of a week

▶ You are the future engineers and shall learn new tools
▶ You may then bring Chisel into the company

29 / 68

More on Chisel Success Stories

▶ Last live conference CCC 2020 in silicon valley
▶ 90 participants
▶ More than 30 different chip companies present
▶ Several companies are looking into Chisel
▶ IBM did an open-source PowerPC
▶ SiFive is a RISC-V startup success

▶ High productivity with Chisel
▶ Open-source Rocket chip

▶ Esperanto uses the BOOM processor in Chisel
▶ Google did a machine learning processor
▶ Intel is looking at Chisel
▶ Chisel is open-source, if there is a bug you can fix it

▶ You can even contribute to the Chisel ecosystem :-)

30 / 68

https://www.sifive.com/

Introduction to Chisel

▶ Get an idea what Chisel is
▶ Will show you code snippets

▶ Basic hardware constructs in Chisel
▶ Pointers to more information
▶ Have your first Chisel design running in an FPGA!

▶ From 0 to 100 in one afternoon

31 / 68

Chisel

▶ A hardware construction language
▶ Constructing Hardware In a Scala Embedded Language
▶ If it compiles, it is synthesisable hardware
▶ Say goodby to your unintended latches

▶ Chisel is not a high-level synthesis language
▶ Single source for two targets

▶ Cycle accurate simulation (testing)
▶ Verilog for synthesis

▶ Embedded in Scala
▶ Full power of Scala available
▶ But to start with, no Scala knowledge needed

▶ Developed at UC Berkeley

32 / 68

The C Language Family

C

Verilog

SystemVerilog

C++

SystemC

Java

Scala

Chisel

C#

33 / 68

Other Language Families

Algol 68

Ada

VHDL

Python

MyHDL

34 / 68

What Language do You Already Know?

▶ ???

35 / 68

Some Notes on Scala

▶ Object oriented
▶ Functional
▶ Strongly typed

▶ With very good type inference
▶ Could be seen as Java++
▶ Compiled to the JVM
▶ Good Java interoperability

▶ Many libraries available
▶ You can write your testing code in Java

36 / 68

Chisel vs. Scala

▶ A Chisel hardware description is a Scala program
▶ Chisel is a Scala library
▶ When the program is executed it generates hardware
▶ Chisel is a so-called embedded domain-specific language

37 / 68

A Small Language

▶ Chisel is a small language
▶ On purpose
▶ Not many constructs to remember
▶ The Chisel Cheatsheet fits on two pages
▶ The power comes with Scala for circuit generators
▶ With Scala, Chisel can grow with you

38 / 68

https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf

Tool Flow for Chisel Defined Hardware

Hello.scala

scalac

Hello.class

Chisel
JVM

Hello.fir

scala.libchisel3.lib

Verilog
Emitter

JVM
Treadle

JVM

Hello.vHello.vcd

FIRRTL
JVM

Chisel
Tester
JVM

good/bad

GTKWave Circuit
Synthesis

Hello.bit

39 / 68

Signal Types

▶ All types in hardware are a collection of bits
▶ The base type in Chisel is Bits
▶ UInt represents an unsigned integer
▶ SInt represents a signed integer (in two’s complement)

Bits(8.W)

UInt(8.W)

SInt(10.W)

40 / 68

Number of Bits: n.W

▶ A collection of bits has a width
▶ The width is the number of bits
▶ Is written as number followed by .W
▶ Following example shows the width of n

n.W

Bits(n.W)

41 / 68

Constants

▶ Constants can represent signed or unsigned numbers
▶ We use .U and .S to distinguish

0.U // defines a UInt constant of 0

-3.S // defines a SInt constant of -3

▶ Constants can also be specified with a width

3.U(4.W) // An 4-bit constant of 3

42 / 68

Hexadecimal and Binary Representation

▶ We can specify constants with a different base
▶ May come handy sometimes

"hff".U // hexadecimal representation of

255

"o377".U // octal representation of 255

"b1111_1111".U // binary representation of 255

43 / 68

Boolean Values

▶ Type for logical values
▶ Can be true or false
▶ Almost exchangeable with UInt(1.W)
▶ Sometimes a signal, such as valid, may be better

represented by a Boolean type

Bool()

true.B

false.B

44 / 68

Combinational Circuits

▶ Chisel uses Boolean operators, similar to C or Java
▶ & is the AND operator and | is the OR operator
▶ The following code is the same as the schematics
▶ val logic gives the circuit/expression the name logic
▶ That name can be used in following expressions

AND

OR

b
a

c
logic

val logic = (a & b) | c

45 / 68

Standard Logic Operations

val and = a & b // bitwise and

val or = a | b // bitwise or

val xor = a ˆ b // bitwise xor

val not = ˜a // bitwise negation

▶ Note that we do not need to define the width of the values
▶ Note also that this is hardware
▶ All expressions are evaluated in parallel
▶ Order does not matter

46 / 68

Arithmetic Operations

▶ Same as in Java or C
▶ The width of the result is automatically computed
▶ E.g., the width of the multiplication is the sum of the width

of a and the width of b

val add = a + b // addition

val sub = a - b // subtraction

val neg = -a // negate

val mul = a * b // multiplication

val div = a / b // division

val mod = a % b // modulo operation

47 / 68

Wires

▶ A signal (or wire) can be first defined
▶ And later assigned an expression with :=

val w = Wire(UInt())

w := a & b

48 / 68

Chisel Defined Hardware Operators

Operator Description Data types

* / % multiplication, division, modulus UInt, SInt
+ - addition, subtraction UInt, SInt
=== =/= equal, not equal UInt, SInt, returns Bool
> >= < <= comparison UInt, SInt, returns Bool
<< >> shift left, shift right (sign extend on SInt) UInt, SInt
˜ NOT UInt, SInt, Bool
& | ˆ AND, OR, XOR UInt, SInt, Bool
! logical NOT Bool
&& || logical AND, OR Bool

49 / 68

Subfields and Concatenation

A single bit can be extracted as follows:

val sign = x(31)

A subfield can be extracted from end to start position:

val lowByte = largeWord(7, 0)

Bit fields are concatenated with the ## operator:

val word = highByte ## lowByte

50 / 68

A Multiplexer

a
y

sel

b

T

F

▶ A Multiplexer selects between alternatives
▶ So common that Chisel provides a construct for it
▶ Selects a when sel is true.B otherwise b

val result = Mux(sel, a, b)

51 / 68

Conditional Update

▶ With when we can express a conditional update
▶ The resulting circuit is a multiplexer
▶ In contrast to the Mux component, we can have several

assignments in the when block
▶ The rule is the the last enabled assignment counts

▶ Here the order of statements has a meaning

val w = Wire(UInt())

w := 0.U

when (cond) {

w := 3.U

}

52 / 68

The World of Combinational Logic

▶ With the shown operations (logic, arithmetic, Mux) all
possible combinational circuits can be described

▶ Even the Mux is already syntactic sugar
▶ A Mux is basically: (a & sel) | (b & !sel)

▶ But Chisel provides further constructs for more elegant
description of circuits

▶ Stay tuned!

53 / 68

Register

▶ A register is a collection of flip-flops
▶ Updated on the rising edge of the clock
▶ May be set to a value on reset
▶ Clock and reset are implicitly connected to the register
▶ A register can be any Chisel type that can be represented

as a collection of bits

54 / 68

A Register with Reset

D Q

reset

d

0
q

clock

55 / 68

A Register with Reset

Following code defines an 8-bit register, initialized with 0 at
reset:

val reg = RegInit(0.U(8.W))

An input is connected to the register with the := update
operator and the output of the register can be used just with the
name in an expression:

reg := d

val q = reg

56 / 68

Hello World in Chisel

class Hello extends Module {

val io = IO(new Bundle {

val led = Output(UInt(1.W))

})

val CNT_MAX = (50000000 / 2 - 1).U

val cntReg = RegInit(0.U(32.W))

val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.U

when(cntReg === CNT_MAX) {

cntReg := 0.U

blkReg := ˜blkReg

}

io.led := blkReg

}

57 / 68

Chisel is a Hardware Construction Language

▶ The code I showed you looks much like Java code
▶ But it is not a program in the usual sense
▶ It represents a circuit
▶ The “program” constructs the circuit
▶ All statements are “executed” in parallel
▶ Statement order has mostly no meaning

58 / 68

Free Tools for Chisel and FPGA Design

▶ Java OpenJDK 8 (or later) already installed for Java course
▶ sbt, the Scala (and Java) build tool
▶ IntelliJ (the free Community version)
▶ GTKWave
▶ Vivado WebPACK already installed from DE1
▶ Nice to have:

▶ make, git

59 / 68

https://adoptopenjdk.net/
https://www.scala-sbt.org/
https://www.jetbrains.com/idea/download/
http://gtkwave.sourceforge.net/
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

Tool Setup for Different OSs

▶ Windows
▶ Use the installers from the websites

▶ macOS
▶ brew install sbt
▶ For the rest, use the installer from the websites
▶ Use an Ubuntu VM to run Vivado

▶ Linux/Ubuntu
▶ sudo apt install openjdk-8-jdk git make gtkwave
▶ Install sbt
▶ IntelliJ as from the website

▶ Instruction details: https://github.com/schoeberl/
chisel-lab/blob/master/Setup.md

60 / 68

https://github.com/schoeberl/chisel-lab/blob/master/Setup.md
https://github.com/schoeberl/chisel-lab/blob/master/Setup.md

Virtual Machine Setup for Chisel

▶ If setup fails, we have you covered with a Virtual Machine
▶ Ubuntu based
▶ Ubuntu VM with Vivado uid: de2lab, pwd: de2lab

▶ But this is VERY large (40 GB for the .zip file)
▶ Use the VMWare Workstation Player (free for Linux and

Windows)
▶ Use the free VMWare Fusion for macOS

61 / 68

https://patmos-download.compute.dtu.dk/de2lab.zip
https://www.vmware.com/products/workstation-player.html

An IDE for Chisel

▶ IntelliJ
▶ Install the Scala plugin
▶ For IntelliJ: File - New - Project from Existing Sources...,

open build.sbt
▶ Show it

62 / 68

A Chisel Book

▶ Available in open access (as PDF)
▶ Optimized for reading on a tablet (size, hyper links)

▶ Amazon can do the printout

63 / 68

https://github.com/schoeberl/chisel-book

Further Information

▶ https://www.chisel-lang.org/

▶ https:
//github.com/freechipsproject/chisel-cheatsheet/

releases/latest/download/chisel_cheatsheet.pdf

▶ https://github.com/ucb-bar/chisel-tutorial

▶ https://github.com/ucb-bar/generator-bootcamp

▶ http://groups.google.com/group/chisel-users

▶ https://github.com/schoeberl/chisel-book

64 / 68

https://www.chisel-lang.org/
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users
https://github.com/schoeberl/chisel-book

Lab Time: Hello World in Chisel

▶ Get a blinking LED working on your FPGA board
▶ Clone or download the repository from:

▶ https://github.com/schoeberl/chisel-lab
▶ Follow the instructions from the lab page

▶ Start IntelliJ and follow the instructions from the lab page
▶ sbt run
▶ Create a Vivado project
▶ Synthesize with the Play button
▶ Configure the FPGA with the Programmer button

▶ You have your first Chisel design running in an FPGA!
▶ There is also a simulation version available

65 / 68

https://github.com/schoeberl/chisel-lab

Change the Design

▶ Use IntelliJ, gedit, or the editor you like most
▶ Source is in .../src/main/scala/Hello.scala
▶ Change blinking frequency
▶ Rerun the example
▶ Optional:

▶ Change to an asymmetric blinking, e.g., 200 ms on every
second

66 / 68

Summary

▶ The world is digital
▶ Processors do not get much faster – we need to design

custom hardware
▶ We need a modern language for hardware/systems design

for efficient/fast development
▶ Chisel builds on the power of object-oriented and

functional Scala

67 / 68

Let’s have a Chat

▶ I will join you in the lab

68 / 68

