Digital Electronics 2: Introduction

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

February 6, 2025

1/69

Overview

Motivation and the digital abstraction
Course organization

Languages for digital hardware design
A first round of Chisel

Tools and tool setup

Lab: a hardware “Hello World”

vVvvyVvVvyvyy

2/69

A BIG Chip

» https://singularityhub.com/2019/08/26/
this-giant-ai-chip-is-the-size-of-an-ipad-and-holds-1-
> 1.2 x 10'2 transistors

» If you design 1 gate (= 4 transistors) per second
> |t takes you 10 thousand years!

» This calls for some abstraction

3/69

https://singularityhub.com/2019/08/26/this-giant-ai-chip-is-the-size-of-an-ipad-and-holds-1-2-trillion-transistors/
https://singularityhub.com/2019/08/26/this-giant-ai-chip-is-the-size-of-an-ipad-and-holds-1-2-trillion-transistors/

Digital Systems are Everywhere

VVvYyVvVYvVvyVYVYYy

Digital systems are all over in our live

No more analog media

CD, mobile phone, TV, DVD,... all digital now

Analog circuits only at the edge

The rest is processed in digital

If performance allows, functions are moved to software
But processor speedup has slowed down

Algorithms are moved back into hardware

4/69

FPGAs in the Cloud

v

High performance algorithm in an FPGA

An FPGA in the cloud

Intel offers FPGAs for servers

» There was some reason why Intel bought Altera
» And AMD bought Xilinx

We need digital designers to make this work
A good time to be a digital designer

vy

vy

5/69

https://aws.amazon.com/ec2/instance-types/f1/
https://www.intel.com/content/www/us/en/products/docs/storage/programmable/applications/cloud.html

The Digital Abstraction

» Just two values: 0 and 1,
or low and hight

» Represented as voltage
» Digital signals tolerate
noise

» Digital Systems are simple,
just:
» Combinational circuits
and
> Registers

a —]
b AND

6/69

Hardware Design in DK

V VYV VYV VVYyVVyYVYYVYY

Demant (former Oticon)
WSAudiology (former Widex)
GN ReSound

Microchip

Intel (former Altera) Denmark
SyoSil

Comcores

Synopsys

Napatech

Teledyn

and some more...

They are all hiring

7/69

Computer Engineering Education at DTU

vVvyVvyVvVvyy

vy

Between hardware (EE) and software (CS)
Very well payed jobs :-)
Now a new BSc in CE is available at DTU

You can also start with a Bsc in EE
Specialization in Indlejrede systemer og programmering

» 02155: Computer Architecture and Engineering
» 02105: Algoritmer og datastrukturer

Take some of the new CE courses
Continue as MSc. in Computer Science and Engineering
Specialization in

» Digital Systems

8/69

Digital Design within an CS or EE Master

» Select some of the following courses

VVVVYYVYYVYY

02155: Computer Architecture and Engineering
02118: Introduction to Chip Design

02203: Design of Digital Systems

02211: Research Topics in Computer Architecture
02205: VLSI Design

022xx: Verification of Digital Designs

02209: Test of Digital Systems

9/69

Web Resources

» DTU Learn
» Group building
» Project report hand in
» Course website
» General information, starting point
> Lab website
» Lab material on GitHub
» Chisel book website
» Download the free PDF

10/69

https://learn.inside.dtu.dk/d2l/home
http://www2.imm.dtu.dk/courses/02139/
https://github.com/schoeberl/chisel-lab
http://www.imm.dtu.dk/~masca/chisel-book.html

Organization and Workload

v

Usually 2 hours lectures and 2 hours supervised lab

» 5 ECTS is equivalent to 9 hours per week
» That means 5 hours work on your own
» Do some reading, prepare for the lecture and lab
» Get the tools installed on your laptop
» You have an FPGA board, experiment with it
» You will learn a lot in this course, it will make you a better:
» engineer
» hardware designer
» programmer, and
» computer user in general

» Try to have fun with building stuff that is real!

11/69

Important Help

» We have two TAs for this semester

» David Wilson Jacobsen

» Ehsan Khodadad

» You will meet them in the lab

» Shall we start a Discord server for the course?

12/69

Lab Work

» A Vending Machine
» At the end it shall run in your FPGA board
» | am a big fan of running stuff in real hardware
» | know many groups have only one physical FPGA board
> A lot can be done in simulation
» | developed a simulation of the Basys3 board (during first
lockdown)
» | assume you will find a solution for file sharing

> GitHub is a popular one for source code
» Can also be used if you plan to write your report in LaTeX

13/69

Communication and Getting Help

» Several sources of information:
» The Internet, Google, and Stackoverflow
» Your fellow students (e.g., via Discord)
> The TAs
> Me
> You can always just knock on my door or shoot me an
email

» Official info will be sent via DTU Learn email

14/69

Cheating and Plagiarism

> |t is ok and good practice to discuss problems and
solutions with your fellow students

» But you need to hand in your own solution
» Copying stuff or offering stuff for copying is cheating

» Copying material from somewhere is plagiarism and
copyright violation

» Cheating is handled quite rigorous at DTU, you might get
expelled

» Using source code control (GitHub) is good practice

» However, keep it private. Otherwise you might contribute to
cheating

15/69

Al, ChatGPT, and Co.

» DTU has changed their rules

» | do not know the exact rules currently
» |, as teacher, can override those rules

» Al is part of our live, it is just another tool in our toolbox
» | use ChatGPT, MS Copilot, GitHub Copilot, and DeepSeek
» You are allowed to use Al as well

» However, be careful to learn some coding by yourself
(exam without Internet)
» If you use it:
» Cite it in your report
» Write a short section on reflecting how useful it was

16/69

This is an Open-Access/Open-Source Course

» Almost all material is public visible
» Slides are open source

» Lab material is open source

>

>

The Chisel book is open source
Hosted on GitHub

» You can contribute with a pull request
» Becoming an author of this course :-)

17/69

Lab Work

» Some paper and pencil exercises
» Two personal hand-ins of typical exam problems

Most work on designing digital circuits with a hardware
description language

Builds up to the final project: a vending machine
The hand-ins, vending machine, and the report are graded

v

vy

18/69

Questions?

» On lectures
» On the group/lab work

19/69

A Vending Machine from 1952

Source: Minnesota Historical Society, CC BY-SA 2.0

20/69

https://en.wikipedia.org/wiki/File:CandiesVendingMachine1952.jpg
https://creativecommons.org/licenses/by-sa/2.0

The Vending Machine

vVvyVvVvyvVvyVvyVvYvyyvyy

Final project is a vending machine

Inputs: coins, buy

Display: price and current amount

Output: release can or error

Small challenge to multiplex the display

State machine with data path is the brain of the VM
Will be guided step by step over several weeks

More details next week
VM in hardware versus VM in software
» This is an exercise that you can solve with reasonable effort

21/69

Motivating Example for Chisel:
Lipsi: Probably the Smallest Processor in the World

» Tiny processor

» Simple instruction set
» Shall be small
» Around 200 logic cells, one FPGA memory block
» Hardware described in Chisel
» Available at https://github.com/schoeberl/lipsi
> Usage
» Utility processor for small stuff

» Could be used for your vending machine
» In teaching for introduction to computer architecture

» The design took place on the island Lipsi

22/69

https://github.com/schoeberl/lipsi

The Design of Lipsi on Lipsi

Rl Mo Lo, i
,l.lpl—_~v_i‘—-’*§—*—n 2 ”vi«oiﬁ'_”—l“—p—' M.”Jl.wm =
D 5:‘#!3(8 W’CL‘Jf me""’i/‘/ 32T c~/<(=’5/(w;"v:!‘3\
0y KiZoolc ! (W veq indivek f5. Seyel®s)
LY
o £ Lt u/a(:mfm(ﬁ 8 bit vo,able (05344 in struelong
-y / «
D Ac,cu + 8[”7) h’jjsff’ I Lw(""hi\/
b 25¢ byle imsbactiony 25 byte dﬁ{m
7
Do'ﬁﬂfif
"/

)

hou 2

23/69

Lipsi Implementation

v

Hardware described in Chisel

Tester in Chisel
Assembler in Scala
» Core case statement about 20 lines
Reference design of Lipsi as software simulator in Scala
Testing:
» Self testing assembler programs
» Comparing hardware with a software simulator

All'in a single programming language!
All in a single program
How much work is this?

24/69

Chisel is Productive

» All coded and tested in less than 14 hours!
» The hardware in Chisel

» Assembler in Scala

» Some assembler programs (blinking LED)
» Simulation in Scala

> Two testers

>

BUT, this does not include the design (done on paper)

25/69

Motivating Example: Lipsi, a Tiny Processor

» Show in Intellid (if beamer allows)

26/69

The Slides are Online

» http://www2.imm.dtu.dk/courses/02139/

» https://github.com/schoeberl/chisel-book/tree/
master/slides

27/69

http://www2.imm.dtu.dk/courses/02139/
https://github.com/schoeberl/chisel-book/tree/master/slides
https://github.com/schoeberl/chisel-book/tree/master/slides

10 Minutes Break

28/69

Why Chisel Instead of VHDL/Verilog/SystemVerilog?

» Company O does Verilog, company W does VHDL
» Why Chisel?
» We learn principles of digital design, not tools
> We pick a language that is modern and productive
» When knowing principles, switching the language is a
matter of a week

> You are the future engineers and shall learn new tools

v

You may then bring Chisel into the company

29/69

More on Chisel Success Stories

vVvyvyVvVvyyypy

vvyyvyy

Last live conference CCC 2020 in silicon valley
90 participants

More than 30 different chip companies present
Several companies are looking into Chisel

IBM did an open-source PowerPC
SiFive is a RISC-V startup success

» High productivity with Chisel
» Open-source Rocket chip

Esperanto uses the BOOM processor in Chisel
Google did a machine learning processor
Intel is looking at Chisel

Chisel is open-source, if there is a bug you can fix it
» You can even contribute to the Chisel ecosystem :-)

30/69

https://www.sifive.com/

Introduction to Chisel

» Get an idea what Chisel is
» Will show you code snippets

» Basic hardware constructs in Chisel
» Pointers to more information

» Have your first Chisel design running in an FPGA!
» From 0 to 100 in one afternoon

31/69

Chisel

» A hardware construction language
» Constructing Hardware In a Scala Embedded Language
> |f it compiles, it is synthesisable hardware
» Say goodby to your unintended latches

» Chisel is not a high-level synthesis language

» Single source for two targets

» Cycle accurate simulation (testing)
> Verilog for synthesis

» Embedded in Scala

» Full power of Scala available
» But to start with, no Scala knowledge needed

» Developed at UC Berkeley

32/69

The C Language Family

Verilog C++ Java C#

SystemVerilog SystemC Scala

|
Chisel

33/69

Other Language Families

Algol 68
\ Python
Ada \
\ MyHDL
VHDL

34/69

What Language do You Already Know?

> ?777?

35/69

Some Notes on Scala

» Obiject oriented
Functional
Strongly typed

> With very good type inference
Could be seen as Java++
Compiled to the JVM

» Good Java interoperability

» Many libraries available
» You can write your testing code in Java

vy

vy

36/69

Chisel vs. Scala

» A Chisel hardware description is a Scala program

» Chisel is a Scala library

» When the program is executed it generates hardware

» Chisel is a so-called embedded domain-specific language

37/69

A Small Language

» Chisel is a small language

» On purpose

» Not many constructs to remember

» The Chisel Cheatsheet fits on two pages

» The power comes with Scala for circuit generators
» With Scala, Chisel can grow with you

38/69

https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf

Tool Flow for Chisel Defined Hardware

[S— [S—
chisel3.lib Hello.scala

scalac

Hello.class
Chisel
JVM

Hello.fir

FIRRTL
JVM

Chisel
Tester

JVM

Verilog
T':Je\jﬂe Emitter
JVM

Hlloos

GTKWave Circuit
Synthesis
Hello.bit

good/bad

39/69

Signal Types

» All types in hardware are a collection of bits

» The base type in Chisel is Bits

> Ulnt represents an unsigned integer

> SInt represents a signed integer (in two’s complement)
Bits (8.W)

UInt(8.W)
SInt (10.W)

40/69

Number of Bits: n.W

» A collection of bits has a width

» The width is the number of bits

» Is written as number followed by .W

» Following example shows the width of n

n.W
Bits(n.W)

41/69

Constants

» Constants can represent signed or unsigned numbers
» We use .U and .S to distinguish

0.U // defines a UInt constant of 0
-3.S // defines a SInt constant of -3

» Constants can also be specified with a width

3.U(4.W) // An 4-bit constant of 3

42/69

Hexadecimal and Binary Representation

» We can specify constants with a different base
» May come handy sometimes

"hff".U // hexadecimal representation of
255
"0377".U // octal representation of 255

"b1111_1111".U // binary representation of 255

43/69

Boolean Values

» Type for logical values
> Can be true or false
» Almost exchangeable with UInt (1.W)

> Sometimes a signal, such as valid, may be better
represented by a Boolean type

Bool OO

true.B
false.B

44/69

Combinational Circuits

» Chisel uses Boolean operators, similar to C or Java

» &is the AND operator and | is the OR operator

» The following code is the same as the schematics

» val logic gives the circuit/expression the name logic
» That name can be used in following expressions

a —|
b]

logic
) o

val logic = (a & b) | ¢

45/69

Standard Logic Operations

val and = a & b // bitwise and
val or = a | b // bitwise or
val xor a "~ b // bitwise xor
val not "a // bitwise negation

> Note that we do not need to define the width of the values
» Note also that this is hardware

» All expressions are evaluated in parallel

» Order does not matter

46/69

Arithmetic Operations

» Same as in Java or C

» The width of the result is automatically computed

» E.g., the width of the multiplication is the sum of the width
of a and the width of b

val
val
val
val
val
val

add
sub
neg
mul
div
mod

addition
subtraction
negate
multiplication
division

modulo operation

47/69

Wires

» A signal (or wire) can be first defined
» And later assigned an expression with :=

val w = Wire(UInt(Q))

48/69

Chisel Defined Hardware Operators

Operator Description Data types

* / % multiplication, division, modulus Ulnt, Sint

+ - addition, subtraction Ulnt, Sint

=== =/= equal, not equal Ulnt, Sint, returns Bool
> >= < <= comparison Ulnt, Sint, returns Bool
<< >> shift left, shift right (sign extend on Sint) Uint, Sint

i NOT Ulint, Sint, Bool

& | ° AND, OR, XOR Ulint, Sint, Bool

! logical NOT Bool

&& || logical AND, OR Bool

49/69

Subfields and Concatenation

A single bit can be extracted as follows:

val sign = x(31)

A subfield can be extracted from end to start position:

val lowByte = largeWord(7, 0)

Bit fields are concatenated with the ## operator:

val word = highByte ## lowByte

50/69

A Multiplexer

[es --

4_ .

—a—¥»T

y —»
—b—>F

» A Multiplexer selects between alternatives
» So common that Chisel provides a construct for it
» Selects a when sel is true.B otherwise b

val result = Mux(sel, a, b)

51/69

Conditional Update

» With when we can express a conditional update
» The resulting circuit is a multiplexer

» In contrast to the Mux component, we can have several
assignments in the when block
» The rule is the the last enabled assignment counts
» Here the order of statements has a meaning

val w = Wire(UInt())

w := 0.0
when (cond) {
w := 3.0

3

52/69

The World of Combinational Logic

» With the shown operations (logic, arithmetic, Mux) all
possible combinational circuits can be described

» Even the Mux is already syntactic sugar
> A Mux is basically: (a & sel) | (b & !sel)

» But Chisel provides further constructs for more elegant
description of circuits

» Stay tuned!

53/69

Register

A register is a collection of flip-flops

Updated on the rising edge of the clock

May be set to a value on reset

Clock and reset are implicitly connected to the register

A register can be any Chisel type that can be represented
as a collection of bits

vVvYyyvyy

54/69

A Register with Reset

19501

0 —»

— d —»

— clock J

55/69

A Register with Reset

Following code defines an 8-bit register, initialized with 0 at
reset:

val reg = RegInit(0.U(8.W))

An input is connected to the register with the : = update
operator and the output of the register can be used just with the
name in an expression:

reg := d
val q = reg

56/69

Hello World in Chisel

class Hello extends Module {
val io = IO(new Bundle {
val led = Output (UInt(1l.W))
b
val CNT_MAX = (50000000 / 2 - 1).U

val cntReg RegInit (0.U(32.W))
val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.U
when(cntReg === CNT_MAX) {
cntReg := 0.U
blkReg := "blkReg
}

io.led := blkReg

57/69

Chisel is a Hardware Construction Language

» The code | showed you looks much like Java code
» But it is not a program in the usual sense

» It represents a circuit

» The “program” constructs the circuit

> All statements are “executed” in parallel

» Statement order has mostly no meaning

58/69

Free Tools for Chisel and FPGA Design

» Java OpendDK 8 (or later) already installed for Java course
» sbt, the Scala (and Java) build tool

» Intellid (the free Community version)

» GTKWave

>

>

Vivado WebPACK already installed from DE1
Nice to have:
> make, git

59/69

https://adoptopenjdk.net/
https://www.scala-sbt.org/
https://www.jetbrains.com/idea/download/
http://gtkwave.sourceforge.net/
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

Tool Setup for Different OSs

» Windows
» Use the installers from the websites
» macOS

» brew install sbt
» For the rest, use the installer from the websites
» Use an Ubuntu VM to run Vivado

» Linux/Ubuntu

» sudo apt install openjdk-8-jdk git make gtkwave
> Install sbt
> IntelliJ as from the website

» Instruction details: https://github.com/schoeberl/
chisel-1lab/blob/master/Setup.md

60/69

https://github.com/schoeberl/chisel-lab/blob/master/Setup.md
https://github.com/schoeberl/chisel-lab/blob/master/Setup.md

Virtual Machine Setup for Chisel

» If setup fails, we have you covered with a Virtual Machine

» Ubuntu based
» Ubuntu VM with Vivado uid: de2lab, pwd: de2lab
» But this is VERY large (40 GB for the .zip file)

» Use the VMWare Workstation Player (free for Linux and
Windows)

» Use the free VMWare Fusion for macOS

61/69

https://patmos-download.compute.dtu.dk/de2lab.zip
https://www.vmware.com/products/workstation-player.html

An IDE for Chisel

> IntelliJ
» Install the Scala plugin

» For IntelliJ: File - New - Project from Existing Sources...,
open build.sbt

> Show it

62/69

A Chisel Book

Digital Design
with Chisel

Martin Schoeberl

» Available in open access (as PDF)
> Optimized for reading on a tablet (size, hyper links)

» Amazon can do the printout

63/69

https://github.com/schoeberl/chisel-book

Further Information

v

vvyyypy

https://www.chisel-1lang.org/

https:
//github.com/freechipsproject/chisel-cheatsheet/
releases/latest/download/chisel_cheatsheet.pdf

https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users
https://github.com/schoeberl/chisel-book

64/69

https://www.chisel-lang.org/
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users
https://github.com/schoeberl/chisel-book

Lab Time: Hello World in Chisel

» Get a blinking LED working on your FPGA board
» Clone or download the repository from:
» https://github.com/schoeberl/chisel-1lab
» Follow the instructions from the lab page
» Start IntelliJ and follow the instructions from the lab page
> sbt run
» Create a Vivado project

> Synthesize with the Play button
» Configure the FPGA with the Programmer button

» You have your first Chisel design running in an FPGA!
» There is also a simulation version available

65/69

https://github.com/schoeberl/chisel-lab

Change the Design

Use Intellid, gedit, or the editor you like most
Sourceisin .../src/main/scala/Hello.scala
Change blinking frequency

Rerun the example

Optional:

» Change to an asymmetric blinking, e.g., 200 ms on every
second

vVvyVvyVvyy

66/69

Tiny Tapeout Workshop

VVvYyVvVYvVvyVYVYYy

What is Tiny Tapeout?

Tiny Tapeout can have your design on a real chip
For $ 50 instead of $ 10000

We have a TT workshop at DTU Fr. 15th Feb.
Given by Matt Venn
https://edud4chip.github.io/ttw2025DTU.html
DTU will buy some PCBs

test your chip on a bringup party

67/69

https://edu4chip.github.io/ttw2025DTU.html

Summary

» The world is digital

» Processors do not get much faster — we need to design
custom hardware

» We need a modern language for hardware/systems design
for efficient/fast development

» Chisel builds on the power of object-oriented and
functional Scala

68/69

Let's have a Chat

» | will join you in the lab

69/69

