Software Development Projects

Robin Sharp Jens Thyge Kristensen
Department of Information Technology, DTU

September 2000

Contents

Introduction

Phases of a Project

2.1 Models of the Software Development Process
2.2 Requirements Analysis
2.3 Modelling and Design
2.4 Implementation
2.5 System Test

Roles in a Project

Project Management

4.1 Activities and Activity Scheduling 000
4.2 Risk Management Lo
4.3 Project Records

Software Project Documentation
5.1 Goals for documentation
5.2 The structure of the documentation
5.3 Presentationrules e
5.3.1 Terminology
5.3.2 Language and style oo
5.3.3 Typography
5.4 Theuser’smanual e
5.5 Source Programs i e e
5.6 References e

1 INTRODUCTION 2
1 Introduction

These notes give a short introduction to Software Engineering as it is used in software
development projects of moderate size. Software Engineering is the discipline which deals
with the specification, development and evolution of software systems. Even quite simple
software systems commonly have high inherent complexity, a fact which often leads to
software products having defective functionality, being delivered late or in other ways
not living up the users’ expectations. The techniques described in these notes have been
developed over the years to help developers control this complexity in a manner which leads
to the development of reliable products which correctly reflect the customer’s requirements.

The notes fall into two main parts. In the first part, we consider the actual process of
carrying out a development project, its phases, and the results from each of these. In the
second part, we consider some aspects of software projects which are more oriented toward
management: the roles played by the various participants or stakeholders in a project, and
some techniques used for managing projects, in the sense of planning and monitoring the
use of resources.

These notes have been written to help participants in the Informatics Projects course
during their second year of study at DTU, but we hope they will be generally useful as
a short introduction to the subject. For the reader interested in further reading matter,
there are a number of excellent books on this topic. We particularly recommend the latest
(Sixth) edition of Tan Sommerville’s book “Software Engineering” [Som01].

2 Phases of a Project

Software development is an engineering process, and software projects — like most engi-
neering projects — fall naturally into phases, each of which focusses on a particular aspect
of the development process. Four phases are usually identified:

Requirements analysis: The objectives to be met by the software system (together with
its hardware platform) are defined in collaboration with the intended users of the
system.

The result of this phase is a requirements specification document which is approved
by all participants.

Modelling and design: Starting from the requirements specification, the “real world”
concepts employed by the users are expressed in terms of mathematical models or
other abstract descriptions, and the components of the software system are identified
and their functionalities specified.

2 PHASES OF A PROJECT 3

The result of this phase is a design specification document which is approved by the #9
project management.

Implementation: The components of the software system identified in the design speci-

fication are implemented in an executable programming language and tested individ-
ually to check that each component correctly implements the functionality required
of it.
The result of this phase is a set of code modules written in the chosen programming
language, a test scheme for each module, stating how it has been tested and giving #0
the results of the individual tests, and technical documentation describing the internal
working of each module.

System test: The individual program modules are integrated into a complete system,
which is then tested to check that overall software requirements have been met. This
is sometimes known as external test, as the system is tested “from the outside”,
without regard for its internal structure.

The result of this phase is a test scheme for the entire system, stating which tests #0
have been carried out and what the results were.

We shall describe these phases in more detail later in these notes.

Most student projects make do with the four phases described above, but in projects in
industry, further phases are added, such as:

Deployment: The system is set in operation on the user’s system and its acceptability for
the intended purpose is checked. This phase may result in a formal, legally binding
acceptance test, where the user takes over the system as a correctly delivered item —
and pays the agreed sum to the supplier.

Maintenance: After delivery, many systems undergo maintenance, due to a need to:

e Correct errors in functionality which did not become apparent during earlier
phases.

e Adapt the software to a new hardware or software environment.

e Extend or modify functionality due to new user requirements.

Software companies often discover that maintenance is an expensive and time-consuming
phase, which takes resources away from important new development. We shall return
later to some things which can be done to reduce this burden.

Finally, it must be noted that the phases described above only refer to software develop-
ment. In many projects, the Requirements Analysis and Design phases include elements of
Systems FEngineering, in which decisions are made as to which elements of the total system
are in fact to be implemented in software. The remainder of the system then consists of
hardware, existing collections of data (in databases or the like), people performing various
functions (with or without the use of computers) and so on. Although in some types of
system this can be very important, we shall concentrate in these notes on the design of the
software, and assume that the systems engineering task has been carried out.

2 PHASES OF A PROJECT 4

2.1 Models of the Software Development Process

There are several accepted paradigms for the process of software development, in which
the phases described above are exploited in different ways. These are often called models
of the software life-cycle. In the simplest model, known as the waterfall or linear sequential
model, the phases of Requirements Analysis, Modelling/Design, Implementation and Test
are dealt with as a linear sequence of activities, so that work on phase N starts when work
on phase (N — 1) has been successfully completed. This is illustrated in Figure 1.

‘_.,—“'-Systems Engineerin.g"“*~~

Analyse ﬁ -
| Design ﬁ
N e Implementﬁ

Test

Delivery
of product

—>
Time

Figure 1: The waterfall model of software development

The waterfall model is a classical model of software development derived from models
used in other branches of engineering, and was first described in 1970 by Royce [Roy70].
Although it is widely used, it has attracted a good deal of criticism, as it does not (at
least in the simple form illustrated here) describe the essentially iterative nature of the
development process. A particular problem is that it implies that the specification, once
agreed on, is frozen. If an error is discovered during system test, corrections are therefore
made to the implementation rather than the design. This may be the ideal state of affairs,
but it is not always a very practical strategy to use in complex systems or in systems which
are based on quite new principles, since the development team may simply not have enough
experience to finalise the design before attempting an implementation. Modern life-cycle
models therefore often incorporate procedures which allow for more experimentation.

The simplest example of this type of model is the incremental model illustrated in Figure 2
on the following page. This is an example of an evolutionary model which reflects the idea
that a software product is produced in a number of versions, each of which is a stepwise
improvement on the previous version. For example, it may solve a more complex task,

2 PHASES OF A PROJECT d

.-” Systems Engineering\\\\

Delivery of

Analyse [—| Design %Implement*’ Test Ist increment

Delivery of

Increment2 | Analyse —| Design —|Implement—> Test 2nd increment

Delivery of
3rd increment

Increment 3 | Analyse [—| Design —|Implement—> Test

. | Analyse

Time

Figure 2: The incremental model of software development

include more complete facilities within the given problem domain, offer a more interesting
user interface or whatever. The development of each version or increment follows the usual
sequence of phases, with each increment staggered in time with respect to the previous one,
so that experience from previous designs can be incorporated into the new design. In the
figure, each new increment starts sometime during the detailed design phase of the previous
increment, but the delay may in some cases be much larger, so that development of the
new increment does not start until the previous increment has been delivered. In such
cases, the development model begins to resemble the prototyping model to be described
next.

In a prototyping model, all the stakeholders (the users and the developers) recognise that
they are unable to reach agreement on a final specification without seeing the system in
action and evaluating its behaviour. The entire development process then takes on the
iterative form illustrated in Figure 3. In each iteration, the development team discuss
with the users what the system is to do, and go through the usual phases of design,
implementation and test. The users are then asked to evaluate the system and to suggest
changes, which results in a revised set of requirements, which are then turned into a design,
implemented and tested. This cyclic procedure continues until the users are satisfied with
the functionality of the system.

Prototyping relies on the availability of specification and implementation tools which per-
mit rapid implementation, and this model is typically employed in software development
environments where very high level programming languages — such as functional languages
and logic programming languages — are used. This reflects the fact that software develop-
ment time is more or less linear in the number of lines of code to be written. So a high-level

2 PHASES OF A PROJECT 6

Design \

Implement
Analyse Test
Evaluate
r?}i;)iﬂi 17””””71 Delivery of
Implement. | 1St final product

Figure 3: The prototyping model of software development

language, which makes it possible for the programmer to express abstract ideas very con-
cisely, gives a shorter development time than a low-level one. Since the main idea is to
agree on the intended functionality of the system, efficiency is not usually an important
issue when prototyping is used. If a more efficient version is required, it will be developed
subsequently via a (re-)implementation in a more efficient programming language, devel-
opment of better algorithms, or the use of hardware platforms with increased performance.
This is indicated by the dashed boxes in the figure.

Although prototyping sounds like an ideal way to ensure that the users’ wishes are genuinely
reflected in the design, it in fact often gives rise to disagreements between the development
team and the users. This is because the users may believe that they have seen the real
product in operation and are thus strongly disappointed to hear that they have to wait
for delivery of a version which can be used in practice. Managers of teams which use
prototyping techniques need to explain this carefully at the start of the project.

2.2 Requirements Analysis

The purpose of the Requirements Analysis phase of software development is to produce a
clear description of what the users require from the final system. The essential question to
be answered at this stage is what is the system to do? It is important not to try to think
about how the system is to do this; this is a matter to be considered in the Design phase.

Very often, the customer initiates the project by producing a rough description of the

2 PHASES OF A PROJECT 7

required product. The task of the development team is to ask relevant questions which
enable them to turn these rough ideas into a more detailed and precise description of what
the system is to do. This is not an easy task. Almost everybody has heard about computer
systems which do not fulfil the customer’s requirements. Common reasons for this are:

Essential questions were not asked during the Requirements Analysis phase.

The requirements were formulated in too imprecise a manner.

The questions were put to the wrong people.

The requirements contained too many low-level details, making it impossible to get
an overall grasp of the problem.

A well-known recipe for disaster, for example, is to ask the customer’s top managers what
the system is supposed to do, without talking to the staff who will actually use the system.
Not only is this poor personnel policy, it also often results in a system which does not
reflect the way in which data are actually gathered and used in the customer’s company.

Requirements are often divided into two classes:

Functional requirements: These describe the functionality of the system and the ser-
vices it must provide, the sort of input it must deal with, the form and appearance
of the output and so on.

Non-functional requirements: These describe constraints on the way in which the sys-
tem must operate, such as time and space requirements, ease of use, security require-
ments, requirements with respect to hardware or software platform, standards to be
followed and so on.

The division is somewhat artificial, since requirements which to the user appear non-
functional (say, with respect to security) may to the implementor appear functional (the
system must offer facilities for user authentication). Likewise, ease of use is regarded as
a non-functional requirement, but strongly influences the design of the user interface and
the style of features such as help functions and error messages. But this classification is a
useful way of structuring the discussion about what is required.

The keywords for Requirements Analysis are completeness and precision. To ensure com-
pleteness, you are recommended to make use of a checklist of functional and non-functional
requirements which need to be gathered. For the functional requirements, you need to make
sure that you understand:

The concepts which are used in the problem which the system is to solve.

The mode of operation of the system: interactive, batch-oriented, etc.

The source and form of the input data: numerical, text, from a database, from a file,
via a network, etc.

The functions to be performed by the system using these data.

2 PHASES OF A PROJECT 8

e The destination and form of the output data, analogous to the description for input
data.

e The way in which the system is to react to errors in the data: (user-friendly) error
messages, replacement of faulty data by default values, stop the program with an
exception, etc.

For the non-functional requirements, a longer checklist is required, for example based on
the taxonomy shown in Figure 4.

Non-functional
requirements

Product
requirements

Organisational
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

External
requirements

Interoperabilty
requirements

Ethical
requirements

Legislative
requirements

Delivery
requirements

Implementation
requirements

Standards
requirements

Performance
requirements

Storage
requirements

—

Privacy
requirements

Safety
requirements

Figure 4: Classification of non-functional requirements (after [Som01])

The main classes are:

Product requirements specifying the behaviour of the product, including its perfor-
mance, reliability, ease of use and portability between platforms.

Organisational requirements derived from policies and work procedures used by the
customer and the developers, including the language of implementation, platform
(hardware and operating system), standards or norms to be followed, delivery sched-
ule for the product and its documentation and so on.

External requirements covering everything which is dictated by factors external to the
stakeholders’ organisations, such as legal and ethical requirements, and requirements
related to how the system may affect systems owned by third parties (interoperability
requirements).

You should aim as far as possible to specify requirements in terms of quantities which can
be measured, so that it is later possible to verify that the requirements are met. Table 1
on the following page show some typical metrics used for this purpose.

All the requirements are collected up in the requirements specification. At this stage of the
project, the requirements are often described in natural language, so that the customer can

2 PHASES OF A PROJECT 9

Class of requirement | Typical metrics

Speed Number of transactions per second
Response time to user input
Time to refresh screen

Size Mbytes of store required
Gbytes of disc space required

Ease of use Days of training time
Number of help frames

Reliability Mean time to failure (MTTF)
Rate of failure occurrence
Availability

Robustness Time to restart after failure

Percentage of events causing failure

Portability Number of target platforms

Table 1: Metrics for non-functional requirements

understand them. However, natural language is a common source of misunderstandings,
and every effort should be made to use more precise notations, such as mathematical for-
mula, whenever possible. Obviously this is easier if the customers are technically minded!

2.3 Modelling and Design

In the Modelling and Design phase of a software development project, a full specification is
developed for the software system, so that it can be implemented as an executable program
in the following phase. As the name suggests, this phase can be divided into two parts:

Modelling: Development of a mathematical model or other abstract description of the
“real world” problem identified in the Requirements Analysis phase.

Design: Identification of a set of program components which can produce the functionality
identified in the Requirements Analysis phase, and specification of the interfaces
which they offer to one another.

As a very simple example, let us consider a project to develop a small program for simulat-
ing the flight of a rocket. The initial functional requirements are that the program should
provide:

2 PHASES OF A PROJECT 10

1. An interactive user interface for input, at which the user should be able to provide
a set of data describing the initial mass, thrust, fuel consumption and fuel
capacity of a rocket.

2. A graphical user interface for output, on which the position of the rocket relative
to its starting point can be seen in a two-dimensional coordinate system as time
passes, the position being evaluated for every 100 ms of the simulated flight.

3. The possibility of simulating several rocket flights with different sets of input data
during a single run of the program.

As a non-functional requirement, the customer demands that the position of the rocket in
the graphical output should in fact be updated on the screen every 100 ms, so the user of
the program can follow a simulation of the rocket’s flight in real time.

A (somewhat simplified) mathematical model for describing this problem could be the
following differential equation describing the equation of motion of the rocket:

a d

F+g-m=—(m-v

g 7 (m - 7)

where F is the thrust of the rocket, ¢ the acceleration due to gravity, m is the mass of the
rocket and ¥ its velocity, all of which are functions of time, ¢. It is not the purpose of these
notes to discuss how to solve this equation in detail, but if you have just an elementary

knowledge of the differential calculus you will realise that this equation can be used to
derive an expression for the position of the rocket, Z, as a function of ¢.

Just introducing this model also introduces a notation for several of the concepts mentioned
in natural language in the functional requirements specification. The next step is then to
decide how these concepts are to be expressed in terms of quantities which might appear
in a programming language, so that they can be referred to in the descriptions of the
interfaces to the various modules which make up the system. Firstly, we need to define the
types used to represent these quantities in the program, for example:

Name Type Description

t integer Time in units of 100 ms.

Fx, Fz real Components of thrust vector at time t (Newtons)
VX, vz real Components of velocity vector at time t (m/s)

X, Z real Components of position vector at time t (m)

m real Mass of rocket + fuel at time t (kg)

mr(real Initial mass of rocket without fuel (kg)

mf0 real Fuel capacity = initial mass of fuel (kg)

fuelc real Fuel consumption of rocket (kg/s)

and so on. The next task is to design some modules which perform essential, well-defined
functions in the context of the problem. For example, we might identify functions with the
following types:

2 PHASES OF A PROJECT 11

type thrustvec = (real * real)
type velocityvec = (real * real)
type positionvec = (real * real)

type mass = real
type consumption = real
type time = int

input_rocket: unit -> mass * thrustvec * consumption * mass

simstep: positionvec list * velocityvec * thrustvec * mass * time ->
positionvec list * velocityvec * thrustvec * mass * time

output_orbit: time * positionvec list -> unit

These types and signatures have been given in a functional programming language, in this
case SML. We strongly recommend you to follow this practice, so that the logical design
of the program can be completed at a high level of abstraction before attention is paid to
the details of implementation. The purpose of these functions is as follows:

input_rocket () inputs a new set of data for a simulation. The user is prompted for a
new set of data, and the function returns the initial mass of the rocket with fuel, a pair of
real values giving the x and z components of the initial thrust, the fuel consumption and
the initial mass of fuel, as provided by the user.

simstep(pvl,v,F,m,t) takes a list of position vectors, pvl, whose head is the latest
(current) position vector, together with the current velocity vector, v, the current thrust
vector, F, the current mass, m, and the current time, t, and returns the values of all
these quantities at the end of the next simulation interval of 100 ms. The new values are
assumed to be evaluated by making use of the differential equation. The new position
vector is appended at the head of the position vector list.

output_orbit(t,pvl) takes a time, t, and a list of position vectors, pvl, whose head
is the latest position vector, and updates the graphical interface to show the path of the
rocket up to the given time, as described by the sequence of positions in the list.

These functions need to be controlled by a main program which can deal with one or more
flight simulations. In each simulation, a set of input data is obtained from the user, and
a simulation is performed corresponding to a number of simulation intervals of 100 ms,
starting from the initial position z = z = 0 with velocity 0, and continuing until either the
rocket lands (z becomes 0 again) or the simulation is aborted by the user. The mechanism
to be used by the user for this purpose needs to be specified. We shall not go into further
details here.

The designs of the user interfaces for input and output are also completed at this stage, and
included in a design specification so that the customers can approve them. For example,
the development team might decide that the output for the rocket simulation program

2 PHASES OF A PROJECT 12

0| Time=12345s
VS IS N O N U S OO SO O SO NS SO N SO S SO S
600

ool

Position z (km)

D00 [+ i

200 400 600 800 1000 1200 1400 1600 1800
Position x (km)

Figure 5: Example of graphical interface determined during design phase

should look as shown in Figure 5. This figure should be supplemented with annotations
which explain what the significance of the text and numerical fields in the diagram is, and
where the relevant data come from in the program — i.e. which variables they give the
values of, or how they are calculated. For example, the value given for the time at the
top left corner of the figure is the value of the current time in seconds, evaluated from the
internal quantity giving the time in units of 100 ms. Similarly, the size of the output in
relation to the page or screen must be specified — for a graph, for example, rules for scaling
the axes to suit the size of the curve must be given.

Some of these decisions may mean that the development team need to ask the customer for
more details about what is required. This is quite acceptable. What cannot be accepted is
if the development team omit to ask the customer about matters which they are in doubt
about, and just make some kind of arbitrary decision — “They probably wanted it like this”
or “We’ll just do as we usually do”.

Exercise: Several of the design decisions described in the previous section were not
actually specified in the original functional specification, as given on page 10. List these
decisions. Suggest further questions which it would have been necessary to put to the
customer in order to complete the functional and non-functional requirements.

2.4 Implementation

In the Implementation phase of the project, the software components specified during the
Modelling and Design phase are implemented in some suitable programming language.
The language may already have been given as a non-functional requirement during the

2 PHASES OF A PROJECT 13

Requirements Analysis phase or be selected at the start of the Design phase. If not, it is
chosen now.

Since we assume that the Modelling and Design phase ends up with a specification which
decribes the software components, their interfaces and the way in which they interact with
one another, it should be clear that the Implementation phase just involves developing
correct code for each component, in order to achieve the desired functionality. To put it
another way: the Design phase ends with descriptions of the components viewed as black
boxes, while in the Implementation phase the internal mechanisms of these black boxes are
determined.

This is clearly seen in the rocket example, where the function simstep evaluates the posi-
tion, velocity, thrust and mass at the end of the next interval of 100 ms of simulated flight
time. To do this, it is necessary to develop a suitable algorithm based on the differential
equation. The details of this will depend on how accurate the result is required to be — yet
another example of a non-functional requirement which the development team will have to
ask the customer about.

Similarly, in the implementation of output_orbit it is necessary to decide whether the
entire list of position vectors is to be plotted on the graph each time the function is called,
or whether the previous positions will be remembered, so that it is only necessary to add
the information corresponding to the movement which has taken place in the most recent
interval of 100 ms. This again will depend on the nature of the facilities available for
plotting graphs in the programming environment chosen for the implementation. Maybe
the development team will even have to develop these facilities themselves, which may lead
them to design additional modules for this purpose.

For an inexperienced programmer, this phase is the biggest challenge. For the experienced
software engineer, on the other hand, it is usually the phase which requires least effort,
since the external conditions for all of the modules are given.

A useful principle to follow during implementation is that of traceability of concepts. In
other words, concepts which appeared in the initial requirements and later on in the (more
or less formal) design specification should also be recognisably present in the code. It is
not a good idea to introduce completely new notation or ideas at this stage or to change
things radically in relation to what was planned. For example, it would be inappropriate
and confusing in the rocket flight simulator suddenly to let the time be given by a quantity
of type real. Similarly, concepts which have been referred to in the specification should
not just be allowed to disappear in the final implementation.

An important aspect of the Implementation phase is testing of the modules as they are
developed. This is a so-called #nternal test, in which the developers test out the program
unit based on knowledge of how it works internally. A typical aim is to check that all paths
through the module have been activated and work in accordance with their specifications.

2 PHASES OF A PROJECT 14

This is often known as a path test. Each test case in a path test uses a set of test data
which will cause execution of the program unit to follow a particular path through the
code. The tests performed for each module are documented in the form of a test scheme,
which for each test case specifies:

The purpose of the test case, i.e. what the test is intended to demonstrate, which in
path testing will describe the path to be followed.

The expected result from the test.

The test data actually used.

The result observed, and whether this is in accordance with what was expected.

To perform such a set of tests on a program module, the module must be inserted in a
small test program which either obtains input from the person running the test or from a
file of test data, or which generates test data automatically. The test scheme is included
with the program module in the documentation delivered at the end of the Implementation
phase.

2.5 System Test

The final phase in any development project is the System Test phase, whose aim is to
check that the complete system operates in accordance with the agreed specifications. The
system is assembled from its components, and is tested as a whole, without regard for its
internal structure. The aim is to check that the system can perform all of its intended
functions correctly, and that it also fulfils its non-functional requirements, to the extent
that these can in fact be tested — this is obviously difficult for ethical requirements, for
example!

As in the case of the internal tests of individual modules performed during the Implemen-
tation phase, the development team must work out a test scheme, which for each test case
specifies:

The purpose of the test case, i.e. what the test is intended to demonstrate.

The expected result from the test.

The test data actually used.

The result observed, and whether this is in accordance with what was expected.

The point of having such a test scheme is that it makes it possible, if the system is modified
or errors are detected at a later stage, to see which tests were originally performed on the
system and to repeat them if necessary.

In principle the test scheme should include sufficient test cases to exercise the entire func-
tionality of the system. In practice this is often infeasible due to the system’s complexity,

3 ROLES IN A PROJECT 15

and choices have to be made. If this is the case, you should remember that it is more
important to test the functions which are commonly used than those which are only used
rarely.

3 Roles in a Project

Except in cases where a single person performs a project for his or her own enjoyment,
projects involve a number of different people, who take on characteristic roles. A role
corresponds to a “logical person”, who performs some kind of function related to the
organisation or execution of the project. In projects with few participants, one person may
find him /herself taking on several roles, while in large teams several people may play the
same role.

We can characterise the typical roles in a software development project as follows:

The customer: The customer is the person or organisation who should benefit from the
result of the software project. Customers are (normally) characterised by speaking a
non-technical language, using concepts which are characteristic for the problem area
in which they work. Often, the customer has very diffuse wishes, and expresses basic
and important demands in an implicit manner “between the lines” of the written
material which he or she provides. In the final analysis, the customer defines the
overall resources which can be expended on the project.

The executive: This is the person in the software development organisation who controls
the setting of the project, and can adjust the available resources. The executive often
wants to be informed about the status of the project, its history, and the plans for
how it is expected to develop. The executive is mainly interested in expressing things
in terms of costs and earnings, whereas the internal details of the project are of little
interest.

The designer: The designer is responsible for understanding the customer’s demands
with respect to the result of the project. After gaining that understanding, the
designer must transform the demands into a conceptual frame describing the func-
tionality in an implementable way. Thus the designer must be able to handle both
the concepts used by the customer and the technical concepts used in software de-
velopment. This means that the role of the designer needs to be filled by a very
experienced person who is both creative and systematic.

Essentially, the designer builds the bridge from the requirements specification to the
design specification.

The programmer: The programmer has to understand the designer’s description of the
intended result of the project and to transform that description into source code that
realises the product.

3 ROLES IN A PROJECT 16

It is also the programmer’s responsibility to verify that the functionality of the source
code which he or she writes is the same as that described by the designer. This
verification is done by appropriate testing, as described above.

It is an advantage to the programmer to have insight into the internal structure of the
whole system. This role also demands a certain talent for self-discipline, so that the
programmer’s creativity stays within the limits set by the designer. Otherwise the
work of the programmer could change the project result in an unwanted direction.
The programmer must do a pure transformation of the product described by the
designer into a working piece of software.

The bookkeeper: The bookkeeper keeps track of all the material created during the
different phases of the project, registers the resources used, and keeps track of the
degree of completion of the project.

The bookkeeper also has to store the items produced in all phases of the project in
such a way that they can always be retrieved, and so that all participants can always
find information about the current status of the various parts.

The comptroller: Thisis the person who ensures that the result of the project is what the
customer has ordered. So the job of the comptroller is to ensure that the functionality
of the product is kept invariant throughout the various transformation processes
which are carried out during the phases of the project. He must ensure that functions
required by the customer do not just “disappear” and that unwanted functions are
not introduced.

The comptroller has to combine a good overall grasp of the system with a good sense
of tact and diplomacy, so the development process stays on track and the people
involved keep up a good team spirit.

The project leader: The project leader must ensure that everyone performs in accor-
dance with their roles, and distributes the tasks to the cast. The leader must su-
pervise that the tasks are carried out within the limits to resources given by the
executive, and if necessary transfer resources between tasks.

This role demands a good knowledge of human nature, in order to keep a pleasant
atmosphere among the participants involved in the project, whom the project leader
must protect from direct critisism from the outer world.

In student projects, where the development team typically consists of one or two students,
the customer is the person who poses the problem, while several of the other roles may well
be played by the same person. Nevertheless, it is important to be aware of all these roles,
so that decisions can be made in a realistic manner. For example, one of the development
team may put the project leader hat on from time to time, in order to make a strategic
decision about the running of the project, while the next day he or she returns to being
an ordinary programmer, in order to get on with the implementation. To get a better idea
about project management, you should try to make sure that you realise which role you
are playing whenever the project team meet to discuss the project. We will return to this
topic in the next section of these notes.

4 PROJECT MANAGEMENT 17
4 Project Management

Project management includes all aspects of getting a project to run on time and within
the agreed budget. In this respect software projects are no different to projects within
other engineering disciplines. On the other hand, software projects are characterised by
the product being intangible: you cannot see it developing like a bridge, an airplane or even
an item of computer hardware. This makes it more difficult to keep track of what is going
on, and increases the need for appropriate written material which documents progress.

For projects involving computer systems, project management deals particularly with the
following issues:

Personnel: The allocation of personnel to the development team and the roles which
individual people are to play are specified.

Resource requirements: The hardware and software needed for execution of the project
is specified, and prices and delivery schedules are determined.

Work breakdown: The project is broken down into activities, and the deliverables and
milestones for each activity are specified.

Activity scheduling: The time required to complete each activity, the allocation of per-
sonnel to activities and the dependencies between activities are described, and a
complete schedule for all activities is worked out.

Risk management: Project risks are identified, the likelihood of these risks arising is
estimated and contingency plans are set up for dealing with the risks if they arise.
This may result in one or more alternative project schedules being developed.

In the initial stages of the project, a plan dealing with all these points is drawn up. As
the project progresses, the development team need to report to the management team
(who are by no means necessarily the same as the development team) about progress. The
management team must lay down requirements for how this reporting is to take place.

We have already discussed the question of roles in Section 3 on page 15. The determination
of resource requirements is a relatively simple matter and will not be discussed further here.
The following sections will discuss the remaining issues in more detail.

4.1 Activities and Activity Scheduling

Division of a project into well-defined activities is an essential pre-requisite for being able
to manage the project effectively. Within each activity it is necessary to have at least
one milestone, which marks the end of the activity. Each milestone must be characterised
by a verbal presentation, a piece of documentation or some other tangible item which is
to be delivered by the development team. A realistic period of time should be set aside

4 PROJECT MANAGEMENT 18

for reaching this milestone from the start of the activity, and the personnel needed for
performing the activity must be identified.

A milestone is an internal project event, and the material which is delivered is intended for
the management team. It is often a good idea to associate each milestone with a review,
where the management team evaluate the progress which has been made in the project
and check the quality of what has been produced. Many methods have been proposed for
checking software quality; a simple but effective method which we recommend to you is the
walkthrough. Here one or more persons, who have not been directly involved in a particular
activity, go through the documentation or program produced during that activity with the
people who have produced it. The effect of having to explain what the documentation
means or how a part of the program works is in many cases to reveal lack of clarity or even
genuine errors, which can then be eliminated.

Some milestones may further be characterised by a deliverable, which is an agreed item to be
delivered to the customer. Deliverables may be items of documentation or actual software
modules. The number and schedule of deliverables depends strongly on the size of the
project and the model of the software life-cycle which is being used. If the waterfall model
is used, for example, the minimum set of deliverables would include the user requirements
specification, the actual software product and the user documentation. If the customer
requested full insight into the design, the internal program documentation and the test
schemes for internal test and system test would also be delivered.

Once activities have been identified and personnel allocated, it becomes possible to deter-
mine an actual schedule for the entire set of activities involved in the project. There are a
number of techniques (and associated computer-based tools) for finding feasible schedules —
i.e. schedules such that the activities are performed with due respect for their dependencies,
and such that the same personnel or other resources are not allocated to two activities at
the same time. An example is the activity graph shown in Figure 6 on the following page.
In the figure, activities are denoted by rectangular boxes, and milestones by oval boxes.
Each activity in the graph is marked with the estimated time required for its performance.
Dependencies are marked by arrows: an arrow from A to B means that B depends on the
completion of A. The heavy path through the graph is the critical path, whose duration
gives the minimum time required to finish the project: 55 days, in this case. Delays on
any other path through the directed graph do not necessarily delay the completion of the
project. Tools for handling activity graphs can often automatically work out how much
a given milestone or activity can be delayed without causing the overall project deadline
to be missed. An alternative technique to the activity graph is the activity bar chart
(or Gantt chart), where each activity is marked on a calendar as a bar which reflects its

3

estimated and maximum permissible duration.

BB

4 PROJECT MANAGEMENT 19

15 days
M1 | A2 | 15 days
8 days A9
5 days
ne (e)

20 days

15days (M8)

‘ A10 ‘ *10 days

L

Figure 6: Activity graph for a project

4.2 Risk Management

Risk management is the activity of evaluating risks and contingency plans for dealing with
them if they should arise. This is often divided into three parts:

Risk analysis: Potential risks and their consequences are listed, and the likelihood of
each of them occurring is determined.

Risk planning: Plans to avoid the risk or to minimise its effects on the project are drawn
up.

Risk monitoring: Each risk is assessed at regular intervals, and its likelihood and effect
are re-evaluated.

Typical risks in industrial projects include:

Staff turnover in the development team,

Change of management,

Failure of a supplier to deliver hardware (or necessary software),
Changes in customer requirements,

Imprecise specification,

Faulty estimation of cost or size of system components,
Technology changes which make the technology outmoded,
Competition from other companies.

Usually, the probability of a risk arising is estimated in a very rough manner (high, medium,
low) and its effects in a similar manner as being catastrophic, serious, tolerable (marginal)

4 PROJECT MANAGEMENT 20

or negligible. Obviously, all catastrophic risks and most serious risks need to be taken
seriously and a contingency plan needs to be drawn up to deal with those whose probability
of occurrence is non-negligible.

Exercise: Investigate the risks which are likely to occur in a student project, giving
estimates of their likelihood of occurring and the consequences if they occur.

4.3 Project Records

Activity scheduling relies on good estimates of the duration of the individual activities.
Although some general results are known for all types of project, for example that Analysis
and Design take about 40% of the resources (see for example Table 2), and roughly how
development time is related to the number of lines of code (see Table 3), more detailed
estimates for particular software engineering methods and types of software are based on
experience.

System Type Phase costs (%)
Analysis/Design Implementation Test
Command and control 46 20 34
Spaceborne 34 20 46
Operating system 33 17 50
Scientific 44 26 30
Business 44 28 28

Table 2: Relative costs of software development activities (after [Boe95])

Type of Software Manpower required (man-months)
Simple application 2.4 x kLOC"™%
Auxiliary/service program 2.8 x kLOC'!°
Algorithmically heavy program 3.2 x kLOC"Y?
System program 3.6 x kLOC?

Table 3: Development costs related to program size

Here 1 KLOC = 1000 lines of source text, and 1 man-month is 1.4
calendar months.

The values in the table are for average programmers. For inexpe-
rienced programmers, multiply by at least 4; for experts, multiply

by 0.3 (if less than 300 LOC) to 0.5 (more than 1 kLOC).

5 SOFTWARE PROJECT DOCUMENTATION 21

To accumulate this experience, you should always keep track of how much time you used

to perform the various activities in a project. We recommend you to keep a detailed record

of this in a project notebook, in which you record the progress of the project (especially fa)
the milestones reached, deliverables completed and documents produced) as time goes by.

You can usefully combine this with a list of meetings held and decisions made during the
project, so that it takes the form of a project diary. For example, every time you have a
project-related meeting of any kind (either internally in the development team or with the
customer, external consultant or whatever), you note down:

When and where the meeting took place
Who was present

What the purpose of the meeting was
What decisions were made

When the project is over, you can learn a lot by looking back to see which decisions were
important ones, at what stage things went wrong (if they did), and what it cost to correct
different types of fault.

5 Software Project Documentation

Software needs to be carefully documented if it is to be useful — almost everybody has
experience of poorly documented software products, and knows how time-consuming and
frustrating they are to deal with. One of the main reasons for this, as we have remarked
above, is that software is intangible, so it is not in general possible just by looking at the
product to find out how to use it or how it works internally. Good quality documentation
needs to be produced as part of every serious software project.

Documentation falls into three general categories:

User documentation: This is intended to tell the user of the software about what the
software product can do, and how to install and run it.

Program documentation: This is intended to tell programmers how the program works
internally, and how it has been tested.

Project documentation: This is intended for the customer who initiated the software
project and for the managers of the project, to specify the requirements and to keep
track of progress and use of resources in all phases of the project.

In the previous sections of these notes, we have marked important components of this
documentation with the sign &0 in the margin. To summarise these:

e The requirements specification

5 SOFTWARE PROJECT DOCUMENTATION 22

e The design specification

e The internal technical documentation of the individual modules of the software.

e The test schemes for the individual modules from the internal test performed during
the implementation phase.

e The test schemes for the complete product from the system test performed during
the system test phase.

e The project notebook containing project management information, such as minutes
from all project meetings, management decisions, information about milestones and
deliverables and documentation for the use of resources such as time and money.

In this section we shall look in more detail at what the documentation should contain and
how it should be organised. Much of the section is based on the general ideas presented in
reference [Ris00].

5.1 Goals for documentation

The goal of any documentation can be summarised in two points:

e The documentation should be useful to the reader. I.e. when consulting the docu-
mentation the reader should

— get all the information which is needed
— not get information which is not needed

e The documentation should be easy to update to a new version of the product.

Note that these goals conflict with one another. For example, repeating the same in-
formation at several places in the documentation may be helpful for the reader — but it
is a nuisance when the documentation is to be updated. Thus the person writing the
documentation will have to find a compromise between these two goals.

You must also remember that the different target groups — users of the software, program-
mers, managers etc. — have different requirements with respect to the documentation, as
they have different ways of thinking about the product. Indeed, they often differ markedly
in their general knowledge of software. For example the secretary who uses an office system
and the doctor who uses a computerised patient data system may only have a very vague
idea of what a computer program is or what goes on inside the computer; hopefully this is
not the case for the programmers or their managers! When producing documentation you
must therefore be able to make descriptions of the same product on different levels, and
on each level you must be able to write on the premises of a particular kind of reader.

5 SOFTWARE PROJECT DOCUMENTATION 23

5.2

The structure of the documentation

In a large, industrial-scale project, the items of documentation will typically be produced
in the form of separate reports intended for the various target groups mentioned above. In
a student project, a single report will normally be sufficient. The structure of such a report
should follow the generally accepted style of scientific reports, with sections as follows:

1.

2.

N

8.

Abstract /introduction. This gives a short summary of the contents of the report and
its structure.

The problem to be solved. This should give the reader a general introduction to the
problem domain and describe the actual problem to be solved. Key concepts which
will be used in the remainder of the report are introduced and defined. A concise
description of the underlying theory is given. If a more extensive presentation of the
theory is required (for example with long, detailed proofs of particular results), it
should appear in an appendix.

The requirements specification.

. The design specification.

A general overview presenting the detailed design of the software as implemented.
This should describe the relationships between the individual modules, such as the
way in which they depend on one another, and the internal working of these modules.
Note that detailed program listings should be presented later in an appendix.

The test schemes for the system test of the complete software product.

A conclusion describing the state of the product as delivered, including any known
faults or missing features (in relation to the requirements listed in the requirements
specification), and suggestions for improvements.

A list of references for literature referred to in the report (see Section 5.6 below).

More detailed material which is only of interest to particular groups of readers is usually
placed in appendices, for example:

Sawe

=

5.3

The user’s manual (for the users). We return to this in Section 5.4 below.

The project notebook (for the managers).

The actual source text of the software (for the programmers); see Section 5.5 below.
The test schemes from the internal test of the individual sub-programs in the indi-
vidual modules (for the programmers).

(optional) Detailed theoretical results, proofs or derivations.

Presentation rules

In addition to following a more or less standardised way of organising the documentation,
it is important to follow some general rules for presenting the documentation in a manner
which makes it accessible to the reader.

5 SOFTWARE PROJECT DOCUMENTATION 24

5.3.1 Terminology

The terminology is the set of terms used to denote concepts pertaining to the software
product together with their precise meaning when used in the documentation. Graphical
symbols used in figures are also part of the terminology.

As we have already mentioned during our discussion of the design process, a software
product should whenever possible be described in terms of accepted concepts, terms and
symbols from the problem domain. In general, it is a poor idea to invent completely
new terms for well-known ideas, as the reader then has to put much more effort into
understanding the documentation, and may well give up. On the other hand, terms from
the problem domain have to be used in very precise manner — typically more precise than
is usual when people discuss things informally. This may make it necessary to express finer
distinctions with more concepts, so one will have to invent new terms — or to differentiate
between terms which (in other contexts) are often considered synonymous.

The basic rules for terminology in documentation are:

Consistency: Always use the same term (or symbol) to denote the same concept.
Differentiation: Use different terms (or symbols) to denote different concepts.

Note that these rules are in conflict with a stylistic rule requesting the use of a varied
language to create a fluent text. This stylistic rule does not apply to the terminology of
software documentation, where consistent use of terms and symbols is much more impor-
tant than linguistic variation.

5.3.2 Language and style

The following stylistic rules should be used when writing documentation:

e Use short sentences — avoid long convoluted sentences.

Avoid chattering “small-talk” — and remove sentences which are not essential for
conveying the message of the section being written.

Use figures when appropriate.

The use of figures must be consistent with the written text.

Use examples instead of verbose explanations in tutorial material.

Use tables in the text to arrange referential material in a systematic way.

Give figures and tables titles (“captions”) which summarise the information supplied.
If necessary, supplement the caption with an explanation of any special symbols or
other notation used in the figure.

5 SOFTWARE PROJECT DOCUMENTATION 25

Literary skills are rather useful when documenting software, but don’t get carried away.
Use short and concise language — you are not writing a novel.

Make sure to divide the chapters or large sections of the report into sub-sections in a
natural way. Each section or sub-section must have a title which gives the reader some
idea of the section’s contents. Each section should start by telling the reader what the
section is about, either directly (“In this section we describe the stylistic rules...”) or more
indirectly (“The following stylistic rules should be used...”). In some contexts, it can also
be useful to tell the reader what he or she is expected to get out of reading the section
concerned, and to finish the section with a little summary of what has been presented.

You should always try to keep the level of detail constant throughout a section or sub-
section; if you need to present a particular subject in more detail, then start a sub- (or
sub-sub-)section. For example, the part of these notes which you are reading at present
is a sub-sub-section giving detailed rules for Language and Style within a sub-section on
Presentation Rules within a section on Documentation.

5.3.3 Typography

Most companies have a corporate standard for setting up documentation, and you will, of
course, comply to this standard when working in a company.

At DTU we follow common typographical rules for technical reports:

e Write on A4 sheets.

Put title of report, title of course, date, and your name and signature on the front
page.

The margins should have room for holes used to put the report into a binder.

Use an easily readable size of characters — the font should be at least 11 pt.

Use page numbering.

Chapters, sections and subsections should be numbered.

Figures and tables should be numbered.

Use page footing and/or headings.

Larger reports should have a table of contents and an index.

5.4 The user’s manual

The user’s manual should describe the way in which the product should be installed and
run. In particular, it should tell the potential user about:

e What problem the software can solve for the user.

5 SOFTWARE PROJECT DOCUMENTATION 26

e How to install, start and stop the program.

e What input is to be provided to the program in response to particular prompts from
the program, or in connection with particular screen images, forms or whatever. The
input should be described as precisely as possible in natural language or a formal
notation (such as BNF), so that the user is in no doubt about what is required.

e The normal output expected from the program.

e Any error messages which may appear, what they mean, and what the user is ex-
pected to do in order to recover from (or avoid) such errors.

5.5 Source programs

Source programs should be presented in a manner which makes it possible to see their
structure and which helps the reader to understand how they work.

The following rules will help you to achieve this aim:

e Start the listing of each module (class, signature, functor, etc.) of the program on a
new page.

e Start each module with a heading in the form of a comment which explains the
purpose of the module, who has programmed it, the version number and date of the
current version and other appropriate details which can identify it.

e Start each sub-program (method, function, procedure etc.) of the module with a
heading in the form of a comment which explains the purpose of the sub-program,
and describes its parameters and results.

e Use indentation to help the reader to identify the beginning and end of program
structures such as loops and branching structures (if-then-else, case, etc.).

e Make sure that the lines of program text fit within the width of the paper and do
not run out over the right hand margin or overflow onto the next line.

Comments should give extra information which can not be read directly from the program,
such as:

e The intention of specific parts of the program.
e The intended use of declared variables.
e Invariants of data representations.

Comments should be brief and they should not clutter the program. The program must
be arranged in a way to make it easy for a reader to locate and find any specific part of
the program.

REFERENCES 27

5.6 References

A list of references is an essential part of any scientific or technical report. The references
should unambiguously identify the source of any other documents referred to in the text. It
is both illegal and unethical to quote or refer to the work of other authors without giving a
complete and correct reference, so that the reader can find the original material if required!

The format of a reference depends on the type of work being referred to, i.e. whether it is
a book, conference paper, article in a journal, technical report or whatever. All references
should mention the name(s) of the author(s) (or editors, if the work is a collection of
articles or the like), the title of the item being referred to and the date of publication. In
more detail, you should give at least the following information for the following common
categories of references:

Book: Author(s)/editor(s), title of book, publisher, year of publication.

Article in book: Author(s), title of article, title of book, chapter number/page numbers,
publisher, year of publication.

Conference paper: Author(s), title of paper, name of conference, page numbers, year.

Journal article: Author(s), title of article, name of journal, volume, page numbers, year.

Report: Author, title of report, name of organisation, year.

Some typical examples can be seen in the list of references at the end of these notes. Many
text formatting systems make it easy to produce lists of references in suitable formats, and
you are recommended to use such a system if it is available to you.

References

[Boe81] B. W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs,
New Jersey, 1981.

[Boe95] B. W. Boehm, ‘The High Cost of Software’, in E. Horowitz (ed.), Practical Strate-
gies for Developing Large Software Systems. Addison-Wesley, Reading, Massachusetts,
1975.

[Ris00] Hans Rischel, ‘Documenting Software’, Department of Information Technology,
DTU, 2000.

[Roy70] W. W. Royce, ‘Managing the Development of Large Software Systems’, Proceed-
ings of WESTCON, California, August 1970.

[Som01] Tan Sommerville, Software Engineering, 6th edition. ISBN 0-201-39815-X.
Addison-Wesley, 2001.

