
Software Development ProjectsRobin Sharp Jens Thyge KristensenDepartment of Information Technology, DTUSeptember 2000
Contents1 Introduction 22 Phases of a Project 22.1 Models of the Software Development Process 42.2 Requirements Analysis . 62.3 Modelling and Design . 92.4 Implementation . 122.5 System Test . 143 Roles in a Project 154 Project Management 174.1 Activities and Activity Scheduling . 174.2 Risk Management . 194.3 Project Records . 205 Software Project Documentation 215.1 Goals for documentation . 225.2 The structure of the documentation . 235.3 Presentation rules . 235.3.1 Terminology . 245.3.2 Language and style . 245.3.3 Typography . 255.4 The user's manual . 255.5 Source programs . 265.6 References . 271

1 INTRODUCTION 21 IntroductionThese notes give a short introduction to Software Engineering as it is used in softwaredevelopment projects of moderate size. Software Engineering is the discipline which dealswith the speci�cation, development and evolution of software systems. Even quite simplesoftware systems commonly have high inherent complexity, a fact which often leads tosoftware products having defective functionality, being delivered late or in other waysnot living up the users' expectations. The techniques described in these notes have beendeveloped over the years to help developers control this complexity in a manner which leadsto the development of reliable products which correctly re
ect the customer's requirements.The notes fall into two main parts. In the �rst part, we consider the actual process ofcarrying out a development project, its phases, and the results from each of these. In thesecond part, we consider some aspects of software projects which are more oriented towardmanagement: the roles played by the various participants or stakeholders in a project, andsome techniques used for managing projects, in the sense of planning and monitoring theuse of resources.These notes have been written to help participants in the Informatics Projects courseduring their second year of study at DTU, but we hope they will be generally useful asa short introduction to the subject. For the reader interested in further reading matter,there are a number of excellent books on this topic. We particularly recommend the latest(Sixth) edition of Ian Sommerville's book \Software Engineering" [Som01].2 Phases of a ProjectSoftware development is an engineering process, and software projects { like most engi-neering projects { fall naturally into phases, each of which focusses on a particular aspectof the development process. Four phases are usually identi�ed:Requirements analysis: The objectives to be met by the software system (together withits hardware platform) are de�ned in collaboration with the intended users of thesystem.The result of this phase is a requirements speci�cation document which is approved -by all participants.Modelling and design: Starting from the requirements speci�cation, the \real world"concepts employed by the users are expressed in terms of mathematical models orother abstract descriptions, and the components of the software system are identi�edand their functionalities speci�ed.

2 PHASES OF A PROJECT 3The result of this phase is a design speci�cation document which is approved by the -project management.Implementation: The components of the software system identi�ed in the design speci-�cation are implemented in an executable programming language and tested individ-ually to check that each component correctly implements the functionality requiredof it.The result of this phase is a set of code modules written in the chosen programminglanguage, a test scheme for each module, stating how it has been tested and giving -the results of the individual tests, and technical documentation describing the internalworking of each module.System test: The individual program modules are integrated into a complete system,which is then tested to check that overall software requirements have been met. Thisis sometimes known as external test, as the system is tested \from the outside",without regard for its internal structure.The result of this phase is a test scheme for the entire system, stating which tests -have been carried out and what the results were.We shall describe these phases in more detail later in these notes.Most student projects make do with the four phases described above, but in projects inindustry, further phases are added, such as:Deployment: The system is set in operation on the user's system and its acceptability forthe intended purpose is checked. This phase may result in a formal, legally bindingacceptance test, where the user takes over the system as a correctly delivered item {and pays the agreed sum to the supplier.Maintenance: After delivery, many systems undergo maintenance, due to a need to:� Correct errors in functionality which did not become apparent during earlierphases.� Adapt the software to a new hardware or software environment.� Extend or modify functionality due to new user requirements.Software companies often discover that maintenance is an expensive and time-consumingphase, which takes resources away from important new development. We shall returnlater to some things which can be done to reduce this burden.Finally, it must be noted that the phases described above only refer to software develop-ment. In many projects, the Requirements Analysis and Design phases include elements ofSystems Engineering, in which decisions are made as to which elements of the total systemare in fact to be implemented in software. The remainder of the system then consists ofhardware, existing collections of data (in databases or the like), people performing variousfunctions (with or without the use of computers) and so on. Although in some types ofsystem this can be very important, we shall concentrate in these notes on the design of thesoftware, and assume that the systems engineering task has been carried out.

2 PHASES OF A PROJECT 42.1 Models of the Software Development ProcessThere are several accepted paradigms for the process of software development, in whichthe phases described above are exploited in di�erent ways. These are often called modelsof the software life-cycle. In the simplest model, known as the waterfall or linear sequentialmodel, the phases of Requirements Analysis, Modelling/Design, Implementation and Testare dealt with as a linear sequence of activities, so that work on phase N starts when workon phase (N � 1) has been successfully completed. This is illustrated in Figure 1.
Analyse

Design

Implement

Test

Time

Systems Engineering

Delivery
of product

Figure 1: The waterfall model of software developmentThe waterfall model is a classical model of software development derived from modelsused in other branches of engineering, and was �rst described in 1970 by Royce [Roy70].Although it is widely used, it has attracted a good deal of criticism, as it does not (atleast in the simple form illustrated here) describe the essentially iterative nature of thedevelopment process. A particular problem is that it implies that the speci�cation, onceagreed on, is frozen. If an error is discovered during system test, corrections are thereforemade to the implementation rather than the design. This may be the ideal state of a�airs,but it is not always a very practical strategy to use in complex systems or in systems whichare based on quite new principles, since the development team may simply not have enoughexperience to �nalise the design before attempting an implementation. Modern life-cyclemodels therefore often incorporate procedures which allow for more experimentation.The simplest example of this type of model is the incremental model illustrated in Figure 2on the following page. This is an example of an evolutionary model which re
ects the ideathat a software product is produced in a number of versions, each of which is a stepwiseimprovement on the previous version. For example, it may solve a more complex task,

2 PHASES OF A PROJECT 5
Delivery of

1st increment

Systems Engineering

Increment 2

Increment 3

Delivery of

Delivery of

2nd increment

3rd increment

. . .

Time

Design Test

Design Test

Design Test

ImplementAnalyse

Analyse Implement

ImplementAnalyse

AnalyseFigure 2: The incremental model of software developmentinclude more complete facilities within the given problem domain, o�er a more interestinguser interface or whatever. The development of each version or increment follows the usualsequence of phases, with each increment staggered in time with respect to the previous one,so that experience from previous designs can be incorporated into the new design. In the�gure, each new increment starts sometime during the detailed design phase of the previousincrement, but the delay may in some cases be much larger, so that development of thenew increment does not start until the previous increment has been delivered. In suchcases, the development model begins to resemble the prototyping model to be describednext.In a prototyping model, all the stakeholders (the users and the developers) recognise thatthey are unable to reach agreement on a �nal speci�cation without seeing the system inaction and evaluating its behaviour. The entire development process then takes on theiterative form illustrated in Figure 3. In each iteration, the development team discusswith the users what the system is to do, and go through the usual phases of design,implementation and test. The users are then asked to evaluate the system and to suggestchanges, which results in a revised set of requirements, which are then turned into a design,implemented and tested. This cyclic procedure continues until the users are satis�ed withthe functionality of the system.Prototyping relies on the availability of speci�cation and implementation tools which per-mit rapid implementation, and this model is typically employed in software developmentenvironments where very high level programming languages { such as functional languagesand logic programming languages { are used. This re
ects the fact that software develop-ment time is more or less linear in the number of lines of code to be written. So a high-level

2 PHASES OF A PROJECT 6
Test

Design

Implement

Evaluate

Analyse

final product

Delivery of
Test

Implement

(Re-)Figure 3: The prototyping model of software developmentlanguage, which makes it possible for the programmer to express abstract ideas very con-cisely, gives a shorter development time than a low-level one. Since the main idea is toagree on the intended functionality of the system, e�ciency is not usually an importantissue when prototyping is used. If a more e�cient version is required, it will be developedsubsequently via a (re-)implementation in a more e�cient programming language, devel-opment of better algorithms, or the use of hardware platforms with increased performance.This is indicated by the dashed boxes in the �gure.Although prototyping sounds like an ideal way to ensure that the users' wishes are genuinelyre
ected in the design, it in fact often gives rise to disagreements between the developmentteam and the users. This is because the users may believe that they have seen the realproduct in operation and are thus strongly disappointed to hear that they have to waitfor delivery of a version which can be used in practice. Managers of teams which useprototyping techniques need to explain this carefully at the start of the project.2.2 Requirements AnalysisThe purpose of the Requirements Analysis phase of software development is to produce aclear description of what the users require from the �nal system. The essential question tobe answered at this stage is what is the system to do? It is important not to try to thinkabout how the system is to do this; this is a matter to be considered in the Design phase.Very often, the customer initiates the project by producing a rough description of the

2 PHASES OF A PROJECT 7required product. The task of the development team is to ask relevant questions whichenable them to turn these rough ideas into a more detailed and precise description of whatthe system is to do. This is not an easy task. Almost everybody has heard about computersystems which do not ful�l the customer's requirements. Common reasons for this are:� Essential questions were not asked during the Requirements Analysis phase.� The requirements were formulated in too imprecise a manner.� The questions were put to the wrong people.� The requirements contained too many low-level details, making it impossible to getan overall grasp of the problem.A well-known recipe for disaster, for example, is to ask the customer's top managers whatthe system is supposed to do, without talking to the sta� who will actually use the system.Not only is this poor personnel policy, it also often results in a system which does notre
ect the way in which data are actually gathered and used in the customer's company.Requirements are often divided into two classes:Functional requirements: These describe the functionality of the system and the ser-vices it must provide, the sort of input it must deal with, the form and appearanceof the output and so on.Non-functional requirements: These describe constraints on the way in which the sys-tem must operate, such as time and space requirements, ease of use, security require-ments, requirements with respect to hardware or software platform, standards to befollowed and so on.The division is somewhat arti�cial, since requirements which to the user appear non-functional (say, with respect to security) may to the implementor appear functional (thesystem must o�er facilities for user authentication). Likewise, ease of use is regarded asa non-functional requirement, but strongly in
uences the design of the user interface andthe style of features such as help functions and error messages. But this classi�cation is auseful way of structuring the discussion about what is required.The keywords for Requirements Analysis are completeness and precision. To ensure com-pleteness, you are recommended to make use of a checklist of functional and non-functionalrequirements which need to be gathered. For the functional requirements, you need to makesure that you understand:� The concepts which are used in the problem which the system is to solve.� The mode of operation of the system: interactive, batch-oriented, etc.� The source and form of the input data: numerical, text, from a database, from a �le,via a network, etc.� The functions to be performed by the system using these data.

2 PHASES OF A PROJECT 8� The destination and form of the output data, analogous to the description for inputdata.� The way in which the system is to react to errors in the data: (user-friendly) errormessages, replacement of faulty data by default values, stop the program with anexception, etc.For the non-functional requirements, a longer checklist is required, for example based onthe taxonomy shown in Figure 4.
Non-functional

requirements

requirements

Performance

requirements

Storage

requirements requirements requirements

requirements requirements

requirementsrequirementsrequirements

requirementsrequirementsrequirements

requirements requirementsrequirements

Product Organisational External

Efficiency Reliability Portability Interoperabilty Ethical Legislative

Privacy Safety

StandardsImplementationDelivery

requirements

Usability

Figure 4: Classi�cation of non-functional requirements (after [Som01])The main classes are:Product requirements specifying the behaviour of the product, including its perfor-mance, reliability, ease of use and portability between platforms.Organisational requirements derived from policies and work procedures used by thecustomer and the developers, including the language of implementation, platform(hardware and operating system), standards or norms to be followed, delivery sched-ule for the product and its documentation and so on.External requirements covering everything which is dictated by factors external to thestakeholders' organisations, such as legal and ethical requirements, and requirementsrelated to how the system may a�ect systems owned by third parties (interoperabilityrequirements).You should aim as far as possible to specify requirements in terms of quantities which canbe measured, so that it is later possible to verify that the requirements are met. Table 1on the following page show some typical metrics used for this purpose.All the requirements are collected up in the requirements speci�cation. At this stage of the -project, the requirements are often described in natural language, so that the customer can

2 PHASES OF A PROJECT 9Class of requirement Typical metricsSpeed Number of transactions per secondResponse time to user inputTime to refresh screenSize Mbytes of store requiredGbytes of disc space requiredEase of use Days of training timeNumber of help framesReliability Mean time to failure (MTTF)Rate of failure occurrenceAvailabilityRobustness Time to restart after failurePercentage of events causing failurePortability Number of target platformsTable 1: Metrics for non-functional requirementsunderstand them. However, natural language is a common source of misunderstandings,and every e�ort should be made to use more precise notations, such as mathematical for-mul�, whenever possible. Obviously this is easier if the customers are technically minded!2.3 Modelling and DesignIn the Modelling and Design phase of a software development project, a full speci�cation isdeveloped for the software system, so that it can be implemented as an executable programin the following phase. As the name suggests, this phase can be divided into two parts:Modelling: Development of a mathematical model or other abstract description of the\real world" problem identi�ed in the Requirements Analysis phase.Design: Identi�cation of a set of program components which can produce the functionalityidenti�ed in the Requirements Analysis phase, and speci�cation of the interfaceswhich they o�er to one another.As a very simple example, let us consider a project to develop a small program for simulat-ing the
ight of a rocket. The initial functional requirements are that the program shouldprovide:

2 PHASES OF A PROJECT 101. An interactive user interface for input, at which the user should be able to providea set of data describing the initial mass, thrust, fuel consumption and fuelcapacity of a rocket.2. A graphical user interface for output, on which the position of the rocket relativeto its starting point can be seen in a two-dimensional coordinate system as timepasses, the position being evaluated for every 100 ms of the simulated
ight.3. The possibility of simulating several rocket
ights with di�erent sets of input dataduring a single run of the program.As a non-functional requirement, the customer demands that the position of the rocket inthe graphical output should in fact be updated on the screen every 100 ms, so the user ofthe program can follow a simulation of the rocket's
ight in real time.A (somewhat simpli�ed) mathematical model for describing this problem could be thefollowing di�erential equation describing the equation of motion of the rocket:~F + ~g �m = ddt(m � ~v)where ~F is the thrust of the rocket, ~g the acceleration due to gravity, m is the mass of therocket and ~v its velocity, all of which are functions of time, t. It is not the purpose of thesenotes to discuss how to solve this equation in detail, but if you have just an elementaryknowledge of the di�erential calculus you will realise that this equation can be used toderive an expression for the position of the rocket, ~x, as a function of t.Just introducing this model also introduces a notation for several of the concepts mentionedin natural language in the functional requirements speci�cation. The next step is then todecide how these concepts are to be expressed in terms of quantities which might appearin a programming language, so that they can be referred to in the descriptions of theinterfaces to the various modules which make up the system. Firstly, we need to de�ne thetypes used to represent these quantities in the program, for example:Name Type Descriptiont integer Time in units of 100 ms.Fx, Fz real Components of thrust vector at time t (Newtons)vx, vz real Components of velocity vector at time t (m/s)x, z real Components of position vector at time t (m)m real Mass of rocket + fuel at time t (kg)mr0 real Initial mass of rocket without fuel (kg)mf0 real Fuel capacity = initial mass of fuel (kg)fuelc real Fuel consumption of rocket (kg/s)and so on. The next task is to design some modules which perform essential, well-de�nedfunctions in the context of the problem. For example, we might identify functions with thefollowing types:

2 PHASES OF A PROJECT 11type thrustvec = (real * real)type velocityvec = (real * real)type positionvec = (real * real)type mass = realtype consumption = realtype time = intinput_rocket: unit -> mass * thrustvec * consumption * masssimstep: positionvec list * velocityvec * thrustvec * mass * time ->positionvec list * velocityvec * thrustvec * mass * timeoutput_orbit: time * positionvec list -> unitThese types and signatures have been given in a functional programming language, in thiscase SML. We strongly recommend you to follow this practice, so that the logical designof the program can be completed at a high level of abstraction before attention is paid tothe details of implementation. The purpose of these functions is as follows:input_rocket() inputs a new set of data for a simulation. The user is prompted for anew set of data, and the function returns the initial mass of the rocket with fuel, a pair ofreal values giving the x and z components of the initial thrust, the fuel consumption andthe initial mass of fuel, as provided by the user.simstep(pvl,v,F,m,t) takes a list of position vectors, pvl, whose head is the latest(current) position vector, together with the current velocity vector, v, the current thrustvector, F, the current mass, m, and the current time, t, and returns the values of allthese quantities at the end of the next simulation interval of 100 ms. The new values areassumed to be evaluated by making use of the di�erential equation. The new positionvector is appended at the head of the position vector list.output_orbit(t,pvl) takes a time, t, and a list of position vectors, pvl, whose headis the latest position vector, and updates the graphical interface to show the path of therocket up to the given time, as described by the sequence of positions in the list.These functions need to be controlled by a main program which can deal with one or more
ight simulations. In each simulation, a set of input data is obtained from the user, anda simulation is performed corresponding to a number of simulation intervals of 100 ms,starting from the initial position x = z = 0 with velocity 0, and continuing until either therocket lands (z becomes 0 again) or the simulation is aborted by the user. The mechanismto be used by the user for this purpose needs to be speci�ed. We shall not go into furtherdetails here.The designs of the user interfaces for input and output are also completed at this stage, andincluded in a design speci�cation so that the customers can approve them. For example, -the development team might decide that the output for the rocket simulation program

2 PHASES OF A PROJECT 12

100

200

300

400

500

600

700

800

900

200 400 600 800 1000 1200 1400 1600 1800

Time= 1234.5 s

Position x (km)

P
o

s
it
io

n
 z

 (
k
m

)

Figure 5: Example of graphical interface determined during design phaseshould look as shown in Figure 5. This �gure should be supplemented with annotationswhich explain what the signi�cance of the text and numerical �elds in the diagram is, andwhere the relevant data come from in the program { i.e. which variables they give thevalues of, or how they are calculated. For example, the value given for the time at thetop left corner of the �gure is the value of the current time in seconds, evaluated from theinternal quantity giving the time in units of 100 ms. Similarly, the size of the output inrelation to the page or screen must be speci�ed { for a graph, for example, rules for scalingthe axes to suit the size of the curve must be given.Some of these decisions may mean that the development team need to ask the customer formore details about what is required. This is quite acceptable. What cannot be accepted isif the development team omit to ask the customer about matters which they are in doubtabout, and just make some kind of arbitrary decision { \They probably wanted it like this"or \We'll just do as we usually do".Exercise: Several of the design decisions described in the previous section were notactually speci�ed in the original functional speci�cation, as given on page 10. List thesedecisions. Suggest further questions which it would have been necessary to put to thecustomer in order to complete the functional and non-functional requirements.2.4 ImplementationIn the Implementation phase of the project, the software components speci�ed during theModelling and Design phase are implemented in some suitable programming language.The language may already have been given as a non-functional requirement during the

2 PHASES OF A PROJECT 13Requirements Analysis phase or be selected at the start of the Design phase. If not, it ischosen now.Since we assume that the Modelling and Design phase ends up with a speci�cation whichdecribes the software components, their interfaces and the way in which they interact withone another, it should be clear that the Implementation phase just involves developingcorrect code for each component, in order to achieve the desired functionality. To put itanother way: the Design phase ends with descriptions of the components viewed as blackboxes, while in the Implementation phase the internal mechanisms of these black boxes aredetermined.This is clearly seen in the rocket example, where the function simstep evaluates the posi-tion, velocity, thrust and mass at the end of the next interval of 100 ms of simulated
ighttime. To do this, it is necessary to develop a suitable algorithm based on the di�erentialequation. The details of this will depend on how accurate the result is required to be { yetanother example of a non-functional requirement which the development team will have toask the customer about.Similarly, in the implementation of output_orbit it is necessary to decide whether theentire list of position vectors is to be plotted on the graph each time the function is called,or whether the previous positions will be remembered, so that it is only necessary to addthe information corresponding to the movement which has taken place in the most recentinterval of 100 ms. This again will depend on the nature of the facilities available forplotting graphs in the programming environment chosen for the implementation. Maybethe development team will even have to develop these facilities themselves, which may leadthem to design additional modules for this purpose.For an inexperienced programmer, this phase is the biggest challenge. For the experiencedsoftware engineer, on the other hand, it is usually the phase which requires least e�ort,since the external conditions for all of the modules are given.A useful principle to follow during implementation is that of traceability of concepts. Inother words, concepts which appeared in the initial requirements and later on in the (moreor less formal) design speci�cation should also be recognisably present in the code. It isnot a good idea to introduce completely new notation or ideas at this stage or to changethings radically in relation to what was planned. For example, it would be inappropriateand confusing in the rocket
ight simulator suddenly to let the time be given by a quantityof type real. Similarly, concepts which have been referred to in the speci�cation shouldnot just be allowed to disappear in the �nal implementation.An important aspect of the Implementation phase is testing of the modules as they aredeveloped. This is a so-called internal test, in which the developers test out the programunit based on knowledge of how it works internally. A typical aim is to check that all pathsthrough the module have been activated and work in accordance with their speci�cations.

2 PHASES OF A PROJECT 14This is often known as a path test. Each test case in a path test uses a set of test datawhich will cause execution of the program unit to follow a particular path through thecode. The tests performed for each module are documented in the form of a test scheme, -which for each test case speci�es:� The purpose of the test case, i.e. what the test is intended to demonstrate, which inpath testing will describe the path to be followed.� The expected result from the test.� The test data actually used.� The result observed, and whether this is in accordance with what was expected.To perform such a set of tests on a program module, the module must be inserted in asmall test program which either obtains input from the person running the test or from a�le of test data, or which generates test data automatically. The test scheme is includedwith the program module in the documentation delivered at the end of the Implementationphase.2.5 System TestThe �nal phase in any development project is the System Test phase, whose aim is tocheck that the complete system operates in accordance with the agreed speci�cations. Thesystem is assembled from its components, and is tested as a whole, without regard for itsinternal structure. The aim is to check that the system can perform all of its intendedfunctions correctly, and that it also ful�ls its non-functional requirements, to the extentthat these can in fact be tested { this is obviously di�cult for ethical requirements, forexample!As in the case of the internal tests of individual modules performed during the Implemen-tation phase, the development team must work out a test scheme, which for each test case -speci�es:� The purpose of the test case, i.e. what the test is intended to demonstrate.� The expected result from the test.� The test data actually used.� The result observed, and whether this is in accordance with what was expected.The point of having such a test scheme is that it makes it possible, if the system is modi�edor errors are detected at a later stage, to see which tests were originally performed on thesystem and to repeat them if necessary.In principle the test scheme should include su�cient test cases to exercise the entire func-tionality of the system. In practice this is often infeasible due to the system's complexity,

3 ROLES IN A PROJECT 15and choices have to be made. If this is the case, you should remember that it is moreimportant to test the functions which are commonly used than those which are only usedrarely.3 Roles in a ProjectExcept in cases where a single person performs a project for his or her own enjoyment,projects involve a number of di�erent people, who take on characteristic roles. A rolecorresponds to a \logical person", who performs some kind of function related to theorganisation or execution of the project. In projects with few participants, one person may�nd him/herself taking on several roles, while in large teams several people may play thesame role.We can characterise the typical roles in a software development project as follows:The customer: The customer is the person or organisation who should bene�t from theresult of the software project. Customers are (normally) characterised by speaking anon-technical language, using concepts which are characteristic for the problem areain which they work. Often, the customer has very di�use wishes, and expresses basicand important demands in an implicit manner \between the lines" of the writtenmaterial which he or she provides. In the �nal analysis, the customer de�nes theoverall resources which can be expended on the project.The executive: This is the person in the software development organisation who controlsthe setting of the project, and can adjust the available resources. The executive oftenwants to be informed about the status of the project, its history, and the plans forhow it is expected to develop. The executive is mainly interested in expressing thingsin terms of costs and earnings, whereas the internal details of the project are of littleinterest.The designer: The designer is responsible for understanding the customer's demandswith respect to the result of the project. After gaining that understanding, thedesigner must transform the demands into a conceptual frame describing the func-tionality in an implementable way. Thus the designer must be able to handle boththe concepts used by the customer and the technical concepts used in software de-velopment. This means that the role of the designer needs to be �lled by a veryexperienced person who is both creative and systematic.Essentially, the designer builds the bridge from the requirements speci�cation to thedesign speci�cation.The programmer: The programmer has to understand the designer's description of theintended result of the project and to transform that description into source code thatrealises the product.

3 ROLES IN A PROJECT 16It is also the programmer's responsibility to verify that the functionality of the sourcecode which he or she writes is the same as that described by the designer. Thisveri�cation is done by appropriate testing, as described above.It is an advantage to the programmer to have insight into the internal structure of thewhole system. This role also demands a certain talent for self-discipline, so that theprogrammer's creativity stays within the limits set by the designer. Otherwise thework of the programmer could change the project result in an unwanted direction.The programmer must do a pure transformation of the product described by thedesigner into a working piece of software.The bookkeeper: The bookkeeper keeps track of all the material created during thedi�erent phases of the project, registers the resources used, and keeps track of thedegree of completion of the project.The bookkeeper also has to store the items produced in all phases of the project insuch a way that they can always be retrieved, and so that all participants can always�nd information about the current status of the various parts.The comptroller: This is the person who ensures that the result of the project is what thecustomer has ordered. So the job of the comptroller is to ensure that the functionalityof the product is kept invariant throughout the various transformation processeswhich are carried out during the phases of the project. He must ensure that functionsrequired by the customer do not just \disappear" and that unwanted functions arenot introduced.The comptroller has to combine a good overall grasp of the system with a good senseof tact and diplomacy, so the development process stays on track and the peopleinvolved keep up a good team spirit.The project leader: The project leader must ensure that everyone performs in accor-dance with their roles, and distributes the tasks to the cast. The leader must su-pervise that the tasks are carried out within the limits to resources given by theexecutive, and if necessary transfer resources between tasks.This role demands a good knowledge of human nature, in order to keep a pleasantatmosphere among the participants involved in the project, whom the project leadermust protect from direct critisism from the outer world.In student projects, where the development team typically consists of one or two students,the customer is the person who poses the problem, while several of the other roles may wellbe played by the same person. Nevertheless, it is important to be aware of all these roles,so that decisions can be made in a realistic manner. For example, one of the developmentteam may put the project leader hat on from time to time, in order to make a strategicdecision about the running of the project, while the next day he or she returns to beingan ordinary programmer, in order to get on with the implementation. To get a better ideaabout project management, you should try to make sure that you realise which role youare playing whenever the project team meet to discuss the project. We will return to thistopic in the next section of these notes.

4 PROJECT MANAGEMENT 174 Project ManagementProject management includes all aspects of getting a project to run on time and withinthe agreed budget. In this respect software projects are no di�erent to projects withinother engineering disciplines. On the other hand, software projects are characterised bythe product being intangible: you cannot see it developing like a bridge, an airplane or evenan item of computer hardware. This makes it more di�cult to keep track of what is goingon, and increases the need for appropriate written material which documents progress.For projects involving computer systems, project management deals particularly with thefollowing issues:Personnel: The allocation of personnel to the development team and the roles whichindividual people are to play are speci�ed.Resource requirements: The hardware and software needed for execution of the projectis speci�ed, and prices and delivery schedules are determined.Work breakdown: The project is broken down into activities, and the deliverables andmilestones for each activity are speci�ed.Activity scheduling: The time required to complete each activity, the allocation of per-sonnel to activities and the dependencies between activities are described, and acomplete schedule for all activities is worked out.Risk management: Project risks are identi�ed, the likelihood of these risks arising isestimated and contingency plans are set up for dealing with the risks if they arise.This may result in one or more alternative project schedules being developed.In the initial stages of the project, a plan dealing with all these points is drawn up. Asthe project progresses, the development team need to report to the management team(who are by no means necessarily the same as the development team) about progress. Themanagement team must lay down requirements for how this reporting is to take place.We have already discussed the question of roles in Section 3 on page 15. The determinationof resource requirements is a relatively simple matter and will not be discussed further here.The following sections will discuss the remaining issues in more detail.4.1 Activities and Activity SchedulingDivision of a project into well-de�ned activities is an essential pre-requisite for being ableto manage the project e�ectively. Within each activity it is necessary to have at leastone milestone, which marks the end of the activity. Each milestone must be characterisedby a verbal presentation, a piece of documentation or some other tangible item which isto be delivered by the development team. A realistic period of time should be set aside

4 PROJECT MANAGEMENT 18for reaching this milestone from the start of the activity, and the personnel needed forperforming the activity must be identi�ed.A milestone is an internal project event, and the material which is delivered is intended forthe management team. It is often a good idea to associate each milestone with a review,where the management team evaluate the progress which has been made in the projectand check the quality of what has been produced. Many methods have been proposed forchecking software quality; a simple but e�ective method which we recommend to you is thewalkthrough. Here one or more persons, who have not been directly involved in a particularactivity, go through the documentation or program produced during that activity with thepeople who have produced it. The e�ect of having to explain what the documentationmeans or how a part of the program works is in many cases to reveal lack of clarity or evengenuine errors, which can then be eliminated.Some milestones may further be characterised by a deliverable, which is an agreed item to bedelivered to the customer. Deliverables may be items of documentation or actual softwaremodules. The number and schedule of deliverables depends strongly on the size of theproject and the model of the software life-cycle which is being used. If the waterfall modelis used, for example, the minimum set of deliverables would include the user requirementsspeci�cation, the actual software product and the user documentation. If the customer -requested full insight into the design, the internal program documentation and the test -schemes for internal test and system test would also be delivered.Once activities have been identi�ed and personnel allocated, it becomes possible to deter-mine an actual schedule for the entire set of activities involved in the project. There are anumber of techniques (and associated computer-based tools) for �nding feasible schedules {i.e. schedules such that the activities are performed with due respect for their dependencies,and such that the same personnel or other resources are not allocated to two activities atthe same time. An example is the activity graph shown in Figure 6 on the following page.In the �gure, activities are denoted by rectangular boxes, and milestones by oval boxes.Each activity in the graph is marked with the estimated time required for its performance.Dependencies are marked by arrows: an arrow from A to B means that B depends on thecompletion of A. The heavy path through the graph is the critical path, whose durationgives the minimum time required to �nish the project: 55 days, in this case. Delays onany other path through the directed graph do not necessarily delay the completion of theproject. Tools for handling activity graphs can often automatically work out how mucha given milestone or activity can be delayed without causing the overall project deadlineto be missed. An alternative technique to the activity graph is the activity bar chart(or Gantt chart), where each activity is marked on a calendar as a bar which re
ects itsestimated and maximum permissible duration.

4 PROJECT MANAGEMENT 19
start

A1

A2

A9

A5

A3

A4 A7

A8

A10

A11

A12

M1

M2

M3

M4

M6

M5

M7

M8

A6

finish

8 days

15 days

15 days

7 days

10 days

15 days

25 days

5 days

20 days

10 days

15 days

10 days

Figure 6: Activity graph for a project4.2 Risk ManagementRisk management is the activity of evaluating risks and contingency plans for dealing withthem if they should arise. This is often divided into three parts:Risk analysis: Potential risks and their consequences are listed, and the likelihood ofeach of them occurring is determined.Risk planning: Plans to avoid the risk or to minimise its e�ects on the project are drawnup.Risk monitoring: Each risk is assessed at regular intervals, and its likelihood and e�ectare re-evaluated.Typical risks in industrial projects include:� Sta� turnover in the development team,� Change of management,� Failure of a supplier to deliver hardware (or necessary software),� Changes in customer requirements,� Imprecise speci�cation,� Faulty estimation of cost or size of system components,� Technology changes which make the technology outmoded,� Competition from other companies.Usually, the probability of a risk arising is estimated in a very rough manner (high, medium,low) and its e�ects in a similar manner as being catastrophic, serious, tolerable (marginal)

4 PROJECT MANAGEMENT 20or negligible. Obviously, all catastrophic risks and most serious risks need to be takenseriously and a contingency plan needs to be drawn up to deal with those whose probabilityof occurrence is non-negligible.Exercise: Investigate the risks which are likely to occur in a student project, givingestimates of their likelihood of occurring and the consequences if they occur.4.3 Project RecordsActivity scheduling relies on good estimates of the duration of the individual activities.Although some general results are known for all types of project, for example that Analysisand Design take about 40% of the resources (see for example Table 2), and roughly howdevelopment time is related to the number of lines of code (see Table 3), more detailedestimates for particular software engineering methods and types of software are based onexperience. System Type Phase costs (%)Analysis/Design Implementation TestCommand and control 46 20 34Spaceborne 34 20 46Operating system 33 17 50Scienti�c 44 26 30Business 44 28 28Table 2: Relative costs of software development activities (after [Boe95])Type of Software Manpower required (man-months)Simple application 2:4� kLOC 1:05Auxiliary/service program 2:8� kLOC 1:10Algorithmically heavy program 3:2� kLOC 1:15System program 3:6� kLOC 1:20Table 3: Development costs related to program sizeHere 1 kLOC = 1000 lines of source text, and 1 man-month is 1.4calendar months.The values in the table are for average programmers. For inexpe-rienced programmers, multiply by at least 4; for experts, multiplyby 0.3 (if less than 300 LOC) to 0.5 (more than 1 kLOC).

5 SOFTWARE PROJECT DOCUMENTATION 21To accumulate this experience, you should always keep track of how much time you usedto perform the various activities in a project. We recommend you to keep a detailed recordof this in a project notebook, in which you record the progress of the project (especially -the milestones reached, deliverables completed and documents produced) as time goes by.You can usefully combine this with a list of meetings held and decisions made during theproject, so that it takes the form of a project diary. For example, every time you have aproject-related meeting of any kind (either internally in the development team or with thecustomer, external consultant or whatever), you note down:� When and where the meeting took place� Who was present� What the purpose of the meeting was� What decisions were madeWhen the project is over, you can learn a lot by looking back to see which decisions wereimportant ones, at what stage things went wrong (if they did), and what it cost to correctdi�erent types of fault.5 Software Project DocumentationSoftware needs to be carefully documented if it is to be useful { almost everybody hasexperience of poorly documented software products, and knows how time-consuming andfrustrating they are to deal with. One of the main reasons for this, as we have remarkedabove, is that software is intangible, so it is not in general possible just by looking at theproduct to �nd out how to use it or how it works internally. Good quality documentationneeds to be produced as part of every serious software project.Documentation falls into three general categories:User documentation: This is intended to tell the user of the software about what thesoftware product can do, and how to install and run it.Program documentation: This is intended to tell programmers how the program worksinternally, and how it has been tested.Project documentation: This is intended for the customer who initiated the softwareproject and for the managers of the project, to specify the requirements and to keeptrack of progress and use of resources in all phases of the project.In the previous sections of these notes, we have marked important components of thisdocumentation with the sign - in the margin. To summarise these:� The requirements speci�cation

5 SOFTWARE PROJECT DOCUMENTATION 22� The design speci�cation� The internal technical documentation of the individual modules of the software.� The test schemes for the individual modules from the internal test performed duringthe implementation phase.� The test schemes for the complete product from the system test performed duringthe system test phase.� The project notebook containing project management information, such as minutesfrom all project meetings, management decisions, information about milestones anddeliverables and documentation for the use of resources such as time and money.In this section we shall look in more detail at what the documentation should contain andhow it should be organised. Much of the section is based on the general ideas presented inreference [Ris00].5.1 Goals for documentationThe goal of any documentation can be summarised in two points:� The documentation should be useful to the reader. I.e. when consulting the docu-mentation the reader should{ get all the information which is needed{ not get information which is not needed� The documentation should be easy to update to a new version of the product.Note that these goals con
ict with one another. For example, repeating the same in-formation at several places in the documentation may be helpful for the reader { but itis a nuisance when the documentation is to be updated. Thus the person writing thedocumentation will have to �nd a compromise between these two goals.You must also remember that the di�erent target groups { users of the software, program-mers, managers etc. { have di�erent requirements with respect to the documentation, asthey have di�erent ways of thinking about the product. Indeed, they often di�er markedlyin their general knowledge of software. For example the secretary who uses an o�ce systemand the doctor who uses a computerised patient data system may only have a very vagueidea of what a computer program is or what goes on inside the computer; hopefully this isnot the case for the programmers or their managers! When producing documentation youmust therefore be able to make descriptions of the same product on di�erent levels, andon each level you must be able to write on the premises of a particular kind of reader.

5 SOFTWARE PROJECT DOCUMENTATION 235.2 The structure of the documentationIn a large, industrial-scale project, the items of documentation will typically be producedin the form of separate reports intended for the various target groups mentioned above. Ina student project, a single report will normally be su�cient. The structure of such a reportshould follow the generally accepted style of scienti�c reports, with sections as follows:1. Abstract/introduction. This gives a short summary of the contents of the report andits structure.2. The problem to be solved. This should give the reader a general introduction to theproblem domain and describe the actual problem to be solved. Key concepts whichwill be used in the remainder of the report are introduced and de�ned. A concisedescription of the underlying theory is given. If a more extensive presentation of thetheory is required (for example with long, detailed proofs of particular results), itshould appear in an appendix.3. The requirements speci�cation.4. The design speci�cation.5. A general overview presenting the detailed design of the software as implemented.This should describe the relationships between the individual modules, such as theway in which they depend on one another, and the internal working of these modules.Note that detailed program listings should be presented later in an appendix.6. The test schemes for the system test of the complete software product.7. A conclusion describing the state of the product as delivered, including any knownfaults or missing features (in relation to the requirements listed in the requirementsspeci�cation), and suggestions for improvements.8. A list of references for literature referred to in the report (see Section 5.6 below).More detailed material which is only of interest to particular groups of readers is usuallyplaced in appendices, for example:A. The user's manual (for the users). We return to this in Section 5.4 below.B. The project notebook (for the managers).C. The actual source text of the software (for the programmers); see Section 5.5 below.D. The test schemes from the internal test of the individual sub-programs in the indi-vidual modules (for the programmers).E. (optional) Detailed theoretical results, proofs or derivations.5.3 Presentation rulesIn addition to following a more or less standardised way of organising the documentation,it is important to follow some general rules for presenting the documentation in a mannerwhich makes it accessible to the reader.

5 SOFTWARE PROJECT DOCUMENTATION 245.3.1 TerminologyThe terminology is the set of terms used to denote concepts pertaining to the softwareproduct together with their precise meaning when used in the documentation. Graphicalsymbols used in �gures are also part of the terminology.As we have already mentioned during our discussion of the design process, a softwareproduct should whenever possible be described in terms of accepted concepts, terms andsymbols from the problem domain. In general, it is a poor idea to invent completelynew terms for well-known ideas, as the reader then has to put much more e�ort intounderstanding the documentation, and may well give up. On the other hand, terms fromthe problem domain have to be used in very precise manner { typically more precise thanis usual when people discuss things informally. This may make it necessary to express �nerdistinctions with more concepts, so one will have to invent new terms { or to di�erentiatebetween terms which (in other contexts) are often considered synonymous.The basic rules for terminology in documentation are:Consistency: Always use the same term (or symbol) to denote the same concept.Di�erentiation: Use di�erent terms (or symbols) to denote di�erent concepts.Note that these rules are in con
ict with a stylistic rule requesting the use of a variedlanguage to create a
uent text. This stylistic rule does not apply to the terminology ofsoftware documentation, where consistent use of terms and symbols is much more impor-tant than linguistic variation.5.3.2 Language and styleThe following stylistic rules should be used when writing documentation:� Use short sentences { avoid long convoluted sentences.� Avoid chattering \small-talk" { and remove sentences which are not essential forconveying the message of the section being written.� Use �gures when appropriate.� The use of �gures must be consistent with the written text.� Use examples instead of verbose explanations in tutorial material.� Use tables in the text to arrange referential material in a systematic way.� Give �gures and tables titles (\captions") which summarise the information supplied.If necessary, supplement the caption with an explanation of any special symbols orother notation used in the �gure.

5 SOFTWARE PROJECT DOCUMENTATION 25Literary skills are rather useful when documenting software, but don't get carried away.Use short and concise language { you are not writing a novel.Make sure to divide the chapters or large sections of the report into sub-sections in anatural way. Each section or sub-section must have a title which gives the reader someidea of the section's contents. Each section should start by telling the reader what thesection is about, either directly (\In this section we describe the stylistic rules...") or moreindirectly (\The following stylistic rules should be used..."). In some contexts, it can alsobe useful to tell the reader what he or she is expected to get out of reading the sectionconcerned, and to �nish the section with a little summary of what has been presented.You should always try to keep the level of detail constant throughout a section or sub-section; if you need to present a particular subject in more detail, then start a sub- (orsub-sub-)section. For example, the part of these notes which you are reading at presentis a sub-sub-section giving detailed rules for Language and Style within a sub-section onPresentation Rules within a section on Documentation.5.3.3 TypographyMost companies have a corporate standard for setting up documentation, and you will, ofcourse, comply to this standard when working in a company.At DTU we follow common typographical rules for technical reports:� Write on A4 sheets.� Put title of report, title of course, date, and your name and signature on the frontpage.� The margins should have room for holes used to put the report into a binder.� Use an easily readable size of characters { the font should be at least 11 pt.� Use page numbering.� Chapters, sections and subsections should be numbered.� Figures and tables should be numbered.� Use page footing and/or headings.� Larger reports should have a table of contents and an index.5.4 The user's manualThe user's manual should describe the way in which the product should be installed andrun. In particular, it should tell the potential user about:� What problem the software can solve for the user.

5 SOFTWARE PROJECT DOCUMENTATION 26� How to install, start and stop the program.� What input is to be provided to the program in response to particular prompts fromthe program, or in connection with particular screen images, forms or whatever. Theinput should be described as precisely as possible in natural language or a formalnotation (such as BNF), so that the user is in no doubt about what is required.� The normal output expected from the program.� Any error messages which may appear, what they mean, and what the user is ex-pected to do in order to recover from (or avoid) such errors.5.5 Source programsSource programs should be presented in a manner which makes it possible to see theirstructure and which helps the reader to understand how they work.The following rules will help you to achieve this aim:� Start the listing of each module (class, signature, functor, etc.) of the program on anew page.� Start each module with a heading in the form of a comment which explains thepurpose of the module, who has programmed it, the version number and date of thecurrent version and other appropriate details which can identify it.� Start each sub-program (method, function, procedure etc.) of the module with aheading in the form of a comment which explains the purpose of the sub-program,and describes its parameters and results.� Use indentation to help the reader to identify the beginning and end of programstructures such as loops and branching structures (if-then-else, case, etc.).� Make sure that the lines of program text �t within the width of the paper and donot run out over the right hand margin or over
ow onto the next line.Comments should give extra information which can not be read directly from the program,such as:� The intention of speci�c parts of the program.� The intended use of declared variables.� Invariants of data representations.Comments should be brief and they should not clutter the program. The program mustbe arranged in a way to make it easy for a reader to locate and �nd any speci�c part ofthe program.

REFERENCES 275.6 ReferencesA list of references is an essential part of any scienti�c or technical report. The referencesshould unambiguously identify the source of any other documents referred to in the text. Itis both illegal and unethical to quote or refer to the work of other authors without giving acomplete and correct reference, so that the reader can �nd the original material if required!The format of a reference depends on the type of work being referred to, i.e. whether it isa book, conference paper, article in a journal, technical report or whatever. All referencesshould mention the name(s) of the author(s) (or editors, if the work is a collection ofarticles or the like), the title of the item being referred to and the date of publication. Inmore detail, you should give at least the following information for the following commoncategories of references:Book: Author(s)/editor(s), title of book, publisher, year of publication.Article in book: Author(s), title of article, title of book, chapter number/page numbers,publisher, year of publication.Conference paper: Author(s), title of paper, name of conference, page numbers, year.Journal article: Author(s), title of article, name of journal, volume, page numbers, year.Report: Author, title of report, name of organisation, year.Some typical examples can be seen in the list of references at the end of these notes. Manytext formatting systems make it easy to produce lists of references in suitable formats, andyou are recommended to use such a system if it is available to you.References[Boe81] B. W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cli�s,New Jersey, 1981.[Boe95] B. W. Boehm, `The High Cost of Software', in E. Horowitz (ed.), Practical Strate-gies for Developing Large Software Systems. Addison-Wesley, Reading, Massachusetts,1975.[Ris00] Hans Rischel, `Documenting Software', Department of Information Technology,DTU, 2000.[Roy70] W. W. Royce, `Managing the Development of Large Software Systems', Proceed-ings of WESTCON, California, August 1970.[Som01] Ian Sommerville, Software Engineering, 6th edition. ISBN 0-201-39815-X.Addison-Wesley, 2001.

