String Matching

e String matching problem:

e string T (text) and string P (pattern) over an alphabet 2.
String Matching o [T|=n, |Pl=m.
Inge Li Gortz * Report all starting positions of occurrences of P in T.

P=ababaca
T=bacbababababacab

CLRS 32
Strings String Matching
_ [sutixots | .
+ €. empty string ¢ Knuth-Morris-Pratt (KMP)
+ prefix/suffix: v=xy: s Il
[Probeots | ¢ Finite automaton

* x prefix of v, if y # € X is a proper prefix of v

* y suffix of v, if y # € X is a proper suffix of v.
« Example: S = aabca
- The suffixes of S are: aabca, abca, bca, ca and a.

« The strings abca, bca, ca and a are proper suffixes of S.

A naive string matching algorithm

blalc|blalbla|b|a|b[abla[c|alb]
ababaca
ababac
ababa
abab
aba

ab

a

Cc a
aca
baca
abaca
babaca
ababaca

O T O O 0 0 o
O O OO T O O ®

Improving the naive algorithm

P=aaababa

T:|aaabaa3ﬁmababacabb
aaababa

Improving the naive algorithm

P=aaababa

T- aaab o

aaababa
aaaaahbhbahba

Improving the naive algorithm

P=aaababa

T= aaabaa o

aaababa
aaababa
aaababa

Improving the naive algorithm

P=aaababa

T=aaabaaaabab

aaabalba
aaababa
aaababa
aaaaaaalbblhba

Improving the naive algorithm

P=aaababa

T=aaabaaaabab

aaababa
aaababa

aaababa
aaababa

If we matched 5 characters
from P and then fail:
compare failed character to
2nd character in P

If we matched 3 characters If we matched all characters
from P and then fail: from P:
compare failed character to compare next character to
3nd character in P 2nd character in P

Improving the naive algorithm

P=aaababa

matched a a a

#matched 3 5 7
if fail

compare to 3 2 2

Improving the naive algorithm

P=aaababa

matched a a a

#matched 3 5 7
if fail

compare to 3 2 2

Oﬂme O

If we matched 5 characters
from P and then fail:
compare failed character to
2nd character in P

If we matched 3 characters
from P and then fail:
compare failed character to
3nd character in P

If we matched all characters
from P:
compare next character to
2nd character in P

If we matched 5 characters
from T and then fail:
compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:
compare failed character to
3nd character in P

If we matched all characters
from T:
compare next character to
2nd character in P

Improving the naive algorithm

P=aaababa

matched

a
#matched 1
1

i fail 1 ‘
compare to

If we matched 5 characters
from T and then fail:
compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:
compare failed character to
3nd character in P

If we matched all characters
from T
compare next character to
2nd character in P

Improving the naive algorithm

e KMP: P = aaababa.

matched

#matched

starting state e
accepting state

In state i after reading character j of T:
P[1...i] is the longest prefix of P that is a
suffix of T[1..]]

Improving the naive algorithm

e KMP: P = aaababa.

matched

#matched

e Matching:

T=|E|aabaaababaa

KMP

e KMP: Can be seen as finite automaton with failure links:

e Failure link: longest prefix of P that is a proper suffix of what we have matched until
now.

¢ |n state i after reading T[j]: P[1..i] is the longest prefix of P that is a suffix of T[1...]].

e Can follow several failure links when matching one character:

KMP Analysis

* Analysis. [T|=n, |[P|=m.
+ How many times can we follow a forward edge?
» How many backward edges can we follow (compare to forward edges)?
« Total number of edges we follow?

» What else do we use time for?

KMP Analysis

* Lemma. The running time of KMP matching is O(n).
+ Each time we follow a forward edge we read a new character of T.
* #backward edges followed < #forward edges followed < n.

- If in the start state and the character read in T does not match the forward
edge, we stay there.

+ Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed < 2n.

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

+ Computing failure links: Use KMP matching algorithm.

| longest prefix of P that is a proper suffix of ‘abab’ |

e -No Ll otF oL t-RaiNGE:!

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

+ Computing failure links: Use KMP matching algorithm.

| longest prefix of P that is a suffix of ‘bab’ |

oooae%ee

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

« Computing failure links: Use KMP matching algorithm.

| longest prefix of P that is a suffix of ‘bab’ |

b
020 eme@eee

|Can be found by using KMP to match ‘bab'|

Computation of failure links
+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

1 2 3 4 5 6 7 Need to match: a, ab, aba,
abab, ababa, ababac,
P:@babaoa ababaca

KMP

+ Computing : As KMP matching algorithm (only need 1t values that are
already computed).

* Running time: O(n + m):

* Lemma. Total number of comparisons of characters in KMP is at most 2n.

« Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

KMP

+ Computing m: As KMP matching algorithm (only need it values that are
already computed).

* Running time: O(n + m):

» Lemma. Total number of comparisons of characters in KMP is at most 2n.

+ Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

Finite Automaton

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

starting state

Finite Automaton

¢ Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

starting state

a
O

| longest prefix of P that is a proper suffix of ‘abaa’ |

Matched untinow: a b a a
P ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Qi@%}a(}bo%}coiu

a

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘aa’ = ‘a’

Matched untilnow: a a
P ababaca

Finite Automaton

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Cagbcacbcaccca.

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ac’ = *’

Matched until now: a c
P: ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

ca;bcacbcaccca.

a

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘abb’ =

Matched untilnow: a b b
P: ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Ca;bcacbcaccca.

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘abc’ = *’

Matched untilnow: a b ¢
P ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
‘o@oooo

a

a
O

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’

Matched untiinow: a b a a
P ababaca

Finite Automaton

¢ Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
Vel Te L LIgLIGIGE

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘abac’ = “’

Matched untinow: a b a'c
P: ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

T:@acbababababacab

Finite Automaton

e Finite automaton:
e Q: finite set of states
® Qo € Q: start state

e A c Q: set of accepting states
¢ > finite input alphabet

e §: transition function

e Matching time: O(n)
¢ Preprocessing time: O(m3|%]). Can be done in O(m|Z|) using KMP.

e Total time: O(n + m|%))

