Randomized algorithms

Inge Li Gartz

Thank you to Kevin Wayne for inspiration to slides

Randomized algorithms

« Last week
« Contention resolution
+ Global minimum cut
« Today
« Expectation of random variables
« Guessing cards
« Three examples:
- Median/Select.
* Quick-sort

Random Variables and

—Xpectation

Random variables

- Arandom variable is an entity that can assume different values.

- The values are selected “randomly”; i.e., the process is governed by a
probability distribution.

- Examples: Let X be the random variable “number shown by dice”.
« X can take the values 1, 2, 3, 4, 5, 6.
- If it is a fair dice then the probability that X = 1 is 1/6:
- P[X=1] =1/6.
- P[X=2] =1/6.

Expected values

- Let X be a random variable with values in {xi,...Xn}, where x; are
numbers.

- The expected value (expectation) of X is defined as

E[X]=) x-Pr[X = x]
j=1

« The expectation is the theoretical average.

- Example:

« X =random variable “number shown by dice”

6
1
E[X]:Zj-Pr[X:j]:(1+2+3+4+5+6)-g=3.5
J=1

Waiting for a first succes

- Coin flips. Coin is heads with probability p and tails with probability 1 — p. How
many independent flips X until first heads?

- Probability of X = j? (first succes is in round j)
PriX =j]1=(1-py~"-

- Expected value of X:

E[X]=) j-PriX =]

J=1

=Zj-<1—p>f-1-p
p o0
j-(=py N
Z 5

l—x)2
p 1- p 1
l—p p

for |x|<1.

———

Properties of expectation

- If we repeatedly perform independent trials of an experiment, each of
which succeeds with probability p > 0, then the expected number of
trials we need to perform until the first succes is 1/p.

- If X is a 0/1 random variable, E[X] = Pr[X = 1].

 Linearity of expectation: For two random variables X and Y we have

EIX+ Y| =E[X]+ E[Y]

Guessing cards

« Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each
card.

- Memoryless guessing. Can't remember what's been turned over already. Guess a
card from full deck uniformly at random.

- Claim. The expected number of correct guesses is 1.

. X, = 1 if i” guess correct and zero otherwise.

- X = the correct number of guesses = X; + ... + X, .
- E[X;]] =Pr[X; = 1] = 1/n.

- EIX]=E[X;+---+X,]=E[X]]+ -+ EX]=1/n+--+1/n=1.

Guessing cards

- Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each
card.

« Guessing with memory. Guess a card uniformly at random from cards not yet seen.
- Claim. The expected number of correct guesses is ®(log n).
. X; = 1 if i”" guess correct and zero otherwise.
- X = the correct number of guesses = X; + ... + X,.
- E[X]=Pr[X;=1]=1/(n—1-1).
- EIX]=E[X|]+ - +EX]=1/n+--+1/2+1/1=H,.

Inn<Hn)<Inn+1

Coupon collector

« Coupon collector. Each box of cereal contains a coupon. There are n different types
of coupons. Assuming all boxes are equally likely to contain each coupon, how
many boxes before you have at least 1 coupon of each type?

- Claim. The expected number of steps is O(nlog n).
- Phase j = time between j and j + 1 distinct coupons.

. X] = number of steps you spend in phase J.

- X = number of steps in total = X, + X; + --- + X, _;
. EIX] = n/(n -).

« The expected number of steps:

E[X] = ZX]_ZE[X]_Zn/(n—j)=n-zn:1/i=n-Hn.

j=0 i=1

Median/Select

Select

« Given n numbers S = {a1, ay, ..., an}.
« Median: number that is in the middle position if in sorted order.
« Select(S,k): Return the kth smallest number in S.
« Min(S) = Select(S,1), Max(S)= Select(S,n), Median = Select(S,n/2).

« Assume the numbers are distinct.

Select (S, k) {

Choose a pivot s € S uniformly at random.

For each element e in S
if e < s put e in S’
if e > s put e in S’’
if |S’| = k-1 then return s
if |S’|] 2 k then call Select(S’, k)

if |S’| < k then call Select(s’'’, k - |S'| - 1)

}

Select

Select (S, k) {

Choose a pivot s € S uniformly at random.

For each element e in S
if e < s put e in S’
if e > s put e in S’’
if |S’| = k-1 then return s

if |S’| 2 k then call Select(S’, k)

if |S’| < k then call Select(s’'’, k - |S'| - 1)

}

Worst case running time: T'(n) = cn +c(n — 1) +c¢(n —2) + --- = O(n?).

If there is at least an ¢ fraction of elements both larger and smaller than s:
T(n) en+ (1 —¢e)en+ (1 —¢)?en+---

(1+Q-e)+(1—¢e)2+-)en

cn/e.

IA

Limit number of bad pivots.

Intuition: A fairly large fraction of elements are “well-centered” => random pivot
likely to be good.

Select

Phase j: Size of set at most n(3/4)7 and at least n(3/4)7" .

Central element: at least a quarter of the elements in the current call are smaller and
at least a quarter are larger.

At least half the elements are central.

Pivot central => size of set shrinks with by at least a factor 3/4 => current phase
ends.

Pr[s is central] = 1/2.
Expected number of iterations before a central pivot is found = 2 =>
expected number of iterations in phase j at most 2.

« X: random variable equal to number of steps taken by algorithm.

 Xj: expected number of steps in phase j.
« X=X+ Xo+

Number of steps in one iteration in phase j is at most cn(3/4)j.

. E[X]] = 2cn(3/4Y.

3\ 3\
Expected running time: E[X] = ZE[XJ] < Z 2cn <Z> = 2cn2 (Z) < 8cn
' J

J J

Quicksort

Quicksort

« Given n numbers S = {ai, az, ..., an} return the sorted list.

« Assume the numbers are distinct.

Quicksort: Analysis

« Worst case Quicksort requires (Q(n2) comparisons: if pivot is the smallest element in
the list in each recursive call.

- If pivot always is the median then T(n) = O(n log n).

- fori < j: random variable

Xij =

1 if a; and a; compared by algorithm
0 otherwise

« X total number of comparisons:

n—1 n
X=2 2 Xy

i=1 j=i+1

« Expected number of comparisons:

n—1

n—1 n n
x=n3 3 x)=3 % ey

i=1 j=i+1 i=1 j=i+1

Quicksort: Analysis

« Expected number of comparisons:

n—1 n n—1 n
EIXI=EL), D, X;1= 2,), EIX;]

i=1 j=i+1 i=1 j=i+1
. Since Xl-]- only takes values 0 and 1: E[Xl-j] = Pr[Xl-j = 1]

- a; and a; compared iff g; or g; is the first pivot chosen from Z;; = la;, ..., aj}.

 Pivot chosen independently uniformly at random = all elements from Zl-j equally
likely to be chosen as first pivot from this set.

- We have Pr[X;; = 1] =2/(j—i+ 1)

* Thus
n—1 n n—1 n n—1 n o)
i=1 j=i+l1 i=1 j=i+1 i=1 j=i+1
n—1 n—i+1) n—1 n 2) n—1
=Y Y = <Y Y= =3 otogn =0mlogn)
k . k ,
i=1 k=2 i=1 k=1 i=1

