
Balanced Search Trees

2-3-4 trees

red-black trees

References: Algorithms in Java (handout)



Balanced search trees

Dynamic sets 

• Search 

• Insert 

• Delete 

• Maximum 

• Minimum 

• Successor(x)  (find minimum element ≥ x) 

• Predecessor(x)   (find maximum element ≤ x) 

This lecture: 2-3-4 trees, red-black trees 
Next time: Tiered vektor (not a binary search tree, but maintains a dynamic set). 
In two weeks time: Splay trees
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Dynamic set implementations

Worst case running times 

	 In worst case h=n.  

	 In best case h= log n (fully balanced binary tree) 

Today: How to keep the trees balanced.
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Implementation search insert delete minimum maximum successor predecessor

linked lists O(n) O(1) O(1) O(n) O(n) O(n) O(n)

ordered array O(log n) O(n) O(n) O(1) O(1) O(log n) O(log n)

BST O(h) O(h) O(h) O(h) O(h) O(h) O(h)



2-3-4 trees



2-3-4 trees

2-3-4 trees. Allow nodes to have multiple keys. 

Perfect balance. Every path from root to leaf has same length. 

Allow 1, 2, or 3 keys per node


• 2-node: one key, 2 children 

• 3-node: 2 keys, 3 children 

• 4-node: 3 keys, 4 children
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Search. 

• Compare search key against keys in node. 

• Find interval containing search key 

• Follow associated link (recursively) 

Searching in a 2-3-4 tree
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Search. 

• Compare search key against keys in node. 

• Find interval containing search key 

• Follow associated link (recursively) 

Ex. Search for L

Searching in a 2-3-4 tree
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Where is the predecessor of L? 

And the successor of L?

Predecessor  and successor in a 2-3-4 tree
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Insertion in  a 2-3-4 tree

9

S  VF  G  J

K  R

C  E M  O X

A D L N Q Y  Z



Insertion in  a 2-3-4 tree

Insert.


• Search to bottom for key. 

Ex. Insert B
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Insertion in a 2-3-4 tree

Insert.


• Search to bottom for key. 

• 2-node at bottom: convert to 3-node 

Ex. Insert B
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Insert.


• Search to bottom for key. 

• 2-node at bottom: convert to 3-node 

Ex. Insert X

Insertion in a 2-3-4 tree
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Insert.


• Search to bottom for key. 

• 2-node at bottom: convert to 3-node 

• 3-node at bottom: convert to 4-node  

Ex. Insert X

Insertion in a 2-3-4 tree
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larger than E

H not found

Insertion in  a 2-3-4 tree
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Insert.


• Search to bottom for key. 

• 2-node at bottom: convert to 3-node 

• 3-node at bottom: convert to 4-node  

Ex. Insert H



larger than E

H does not fit here!

Insertion in  a 2-3-4 tree
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Insert.


• Search to bottom for key. 

• 2-node at bottom: convert to 3-node 

• 3-node at bottom: convert to 4-node  

• 4-node at bottom: ?? 

Ex. Insert H



Splitting a 4-node in a 2-3-4 tree

Idea: split the 4-node to make room  

Problem: Doesn’t work if parent is a 4-node 

Solution 1: Split the parent (and continue splitting  

                  while necessary).  

Solution 2: Split 4-nodes on the way down.
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Idea: split 4-nodes on the way down the tree. 

• Ensures last node is not a 4-node. 

• Transformations to split 4-nodes: 

Invariant.  Current node is not a 4-node. 

Consequence.  Insertion at bottom is easy 
since it's not a 4-node.

Splitting 4-nodes in a 2-3-4 tree
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Insert.


• Search to bottom for key. 

• 2-node at bottom: convert to 3-node 

• 3-node at bottom: convert to 4-node  

• 4-node at bottom: ?? 

Ex. Insert H

Insertion in  a 2-3-4 tree
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Insert.


• Search to bottom for key. 

• 2-node at bottom: convert to 3-node 

• 3-node at bottom: convert to 4-node  

• 4-node at bottom: ?? 

Ex. Insert H

Insertion in  a 2-3-4 tree
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Insert.


• Search to bottom for key. 

• 2-node at bottom: convert to 3-node 

• 3-node at bottom: convert to 4-node  

• 4-node at bottom: ?? 

Ex. Insert H

Insertion in  a 2-3-4 tree
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Local transformations that work anywhere in the tree. 

Ex. Splitting a 4-node attached to a 2-node 

Splitting 4-nodes in a 2-3-4 tree
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Local transformations that work anywhere in the tree 

Ex. Splitting a 4-node attached to a 3-node 

Splitting 4-nodes in a 2-3-4 tree
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Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree. 

Splitting a 4-node attached to a 4-node never happens when we split nodes on 
the way down the tree. 

Invariant. Current node is not a 4-node. 
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Insertion 2-3-4 trees
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Deletions in 2-3-4 trees

Delete minimum:  

• minimum always in leftmost leaf 

• If 3- or 4-node: delete key 

Ex. Delete minimum
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Deletions in 2-3-4 trees

Delete minimum:  

• minimum always in leftmost leaf 

• If 3- or 4-node: delete key 

Ex. Delete minimum
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Deletions in 2-3-4 trees

Delete minimum:  

• minimum always in leftmost leaf 

• If 3- or 4-node: delete key 

• 2-node?? 

Ex. Delete minimum
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Idea: On the way down maintain the invariant that current node is not a 2-node. 

• Child of root and root is a 2-node: 

• on the way down:

Deletions in 2-3-4 trees
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Deletions in 2-3-4 trees

Delete minimum:  

• minimum always in leftmost leaf 

• If 3- or 4-node: delete key 

• 2-node: split/merge on way down. 

Ex. Delete minimum
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Deletions in 2-3-4 trees

Delete minimum:  

• minimum always in leftmost leaf 

• If 3- or 4-node: delete key 

• 2-node: split/merge on way down. 

Ex. Delete minimum
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Deletions in 2-3-4 trees

Delete minimum:  

• minimum always in leftmost leaf 

• If 3- or 4-node: delete key 

• 2-node: split/merge on way down. 

Ex. Delete minimum
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Deletions in 2-3-4 trees

Delete:  
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Deletions in 2-3-4 trees

Delete:  

• During search maintain invariant that current node is not a 2-node 
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Deletions in 2-3-4 trees

Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key
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Deletions in 2-3-4 trees

Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 
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Deletions in 2-3-4 trees

Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K
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Deletions in 2-3-4 trees

Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor 
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Deletions in 2-3-4 trees

Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor 
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Deletions in 2-3-4 trees

Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor 
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Deletions in 2-3-4 trees

Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor 
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Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor 

Deletions in 2-3-4 trees
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Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor  

• Delete L from leaf

Deletions in 2-3-4 trees
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Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor  

• Delete L from leaf

Deletions in 2-3-4 trees
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Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor  

• Delete L from leaf 

• Replace K with L

Deletions in 2-3-4 trees
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Deletions in 2-3-4 trees
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Delete:  

• During search maintain invariant that current node is not a 2-node 

• If key is in a leaf: delete key 

• Key not in leaf: replace with successor (always leaf in subtree) and delete 
successor from leaf. 

Ex. Delete K 

• Find successor  

• Delete L from leaf 

• Replace K with L



2-3-4 Tree:  Balance

Property.  All paths from root to leaf have same length. 

Tree height. 

Worst case:	 lg N		   [all 2-nodes] 

Best case: 	 log4 N = 1/2 lg N 	   [all 4-nodes] 

Between 10 and 20 for a million nodes. 

Between 15 and 30 for a billion nodes.
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Dynamic set implementations

Worst case running times 
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Implementation search insert delete minimum maximum successor predecessor

linked lists O(n) O(1) O(1) O(n) O(n) O(n) O(n)

ordered array O(log n) O(n) O(n) O(1) O(1) O(log n) O(log n)

BST O(h) O(h) O(h) O(h) O(h) O(h) O(h)

2-3-4 tree O(log n) O(log n) O(log n) O(log n) O(log n) O(log n) O(log n)



Red-black trees



Represent 2-3-4 tree as a binary search tree 

• Use colors on nodes to represent 3- and 4-nodes.

Red-black tree (Guibas-Sedgewick, 1979)

G K O
K

G O

H  L or
HL

H L

B B
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Represent 2-3-4 tree as a binary search tree 

• Use colors on nodes to represent 3- and 4-nodes. 

• Connection between 2-3-4 trees and red-black trees:

Red-black tree (Guibas-Sedgewick, 1979)

A A C H I N

E R

S

R
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CA

E

I

A

S
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Represent 2-3-4 tree as a binary search tree 

• Use colors on nodes to represent 3- and 4-nodes. 

• Connection between 2-3-4 trees and red-black trees:

Red-black tree (Guibas-Sedgewick, 1979)

A A C H I N

E R

S

R

H N

CA

E

I

A

S
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Red-black tree

Properties of red-black trees: 

• The root is always black 

• All root-to-leaf paths have the same number of black nodes. 

• Red nodes do not have red children
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Red-black tree

Connection between 2-3-4 trees and red-black trees:

A A C H I N

E R

S
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Red-black tree

Connection between 2-3-4 trees and red-black trees:
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Red-black tree

Connection between 2-3-4 trees and red-black trees:
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Insertion in red-black trees

Insertion: Insert a new red leaf. 
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Red-black tree: Parent is red

What if the parent is also red? 

Easy case:
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Red-black tree: Parent is red

What if both the parent and the grandparent are red? 
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Red-black tree: Parent is red

What if both the parent and the grandparent are red? 
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Red-black tree: Parent is red

What if the parent is also red? 
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Rotations in red-black trees

Two types of rotations 
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Rotations in red-black trees

Two types of rotations: 

62

A

B

C

a

b

c d

B

A C

b c da

A

B

C
a

b c

d

A

B

C

a

b

c d

B

A C

b c da

C

B

A

a b

c

d

C

A

B
a

b c

d

C

B

A

a b

c

d



Insert x: 
Search to bottom after key (x) 
Insert red leaf 
Balance: 3 cases (+ symmetric)

Insertion in red-black tree
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Example
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Example
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Running times in red-black trees

• Time for insertion: 

• Search to bottom after key:  

• Insert red leaf:  

• Perform recoloring and rotations on way up: 

• Can recolor many times (but at most h) 

• At most 2 rotations. 

• Total O(h). 

• Time for search 

• Same as BST: O(h) 

• Height: O(log n)
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Dynamic set implementations

Worst case running times 
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Implementation search insert delete minimum maximum successor predecessor

linked lists O(n) O(1) O(1) O(n) O(n) O(n) O(n)

ordered array O(log n) O(n) O(n) O(1) O(1) O(log n) O(log n)

BST O(h) O(h) O(h) O(h) O(h) O(h) O(h)

2-3-4 tree O(log n) O(log n) O(log n) O(log n) O(log n) O(log n) O(log n)

red-black tree O(log n) O(log n) O(log n) O(log n) O(log n) O(log n) O(log n)



Balanced trees: implementations

Redblack trees: 

Java:  java.util.TreeMap, java.util.TreeSet. 

C++ STL:  map, multimap, multiset. 

Linux kernel:  linux/rbtree.h. 
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