Balanced Search Trees

2-3-4 trees red-black trees

References: Algorithms in Java (handout)

Balanced search trees

Dynamic sets

- Search
- Insert
- Delete
- Maximum
- Minimum
- Successor(x) (find minimum element $\geq x$)
- Predecessor(x) (find maximum element $\leq x$)

This lecture: 2-3-4 trees, red-black trees

Next time: Tiered vektor (not a binary search tree, but maintains a dynamic set).

In two weeks time: Splay trees

Dynamic set implementations

Worst case running times

Implementation	search	insert	delete	minimum	maximum	successor	predecessor
linked lists	O(n)	O(1)	O(1)	O(n)	O(n)	O(n)	O(n)
ordered array	O(log n)	O(n)	O(n)	O(1)	O(1)	O(log n)	O(log n)
BST	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)

In worst case h=n.

In best case h= log n (fully balanced binary tree)

Today: How to keep the trees balanced.

2-3-4 trees

2-3-4 trees

2-3-4 trees. Allow nodes to have multiple keys.

Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node

- 2-node: one key, 2 children
- 3-node: 2 keys, 3 children
- 4-node: 3 keys, 4 children

Searching in a 2-3-4 tree

Search.

- Compare search key against keys in node.
- Find interval containing search key
- Follow associated link (recursively)

Searching in a 2-3-4 tree

Search.

- Compare search key against keys in node.
- Find interval containing search key
- Follow associated link (recursively)

Ex. Search for L

Predecessor and successor in a 2-3-4 tree

Where is the predecessor of L?

And the successor of L?

Insert.

• Search to bottom for key.

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??

Idea: split the 4-node to make room

CEG

ABDFJ

H does fit here!

Problem: Doesn't work if parent is a 4-node

Solution 1: Split the parent (and continue splitting while necessary).

CEG

ABDFHJ

Solution 2: Split 4-nodes on the way down.

Idea: split 4-nodes on the way down the tree.

- Ensures last node is not a 4-node.
- Transformations to split 4-nodes:

Invariant. Current node is not a 4-node.

Consequence. Insertion at bottom is easy since it's not a 4-node.

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node

not a 4-node

4-node at bottom: ??

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??

Local transformations that work anywhere in the tree.

Ex. Splitting a 4-node attached to a 2-node

Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 3-node

Local transformations that work anywhere in the tree.

Splitting a 4-node attached to a 4-node never happens when we split nodes on the way down the tree.

Invariant. Current node is not a 4-node.

Insertion 2-3-4 trees

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

Idea: On the way down maintain the invariant that current node is not a 2-node.

Child of root and root is a 2-node:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

• 2-node: split/merge on way down.

Ex. Delete minimum

Delete:

Delete:

• During search maintain invariant that current node is not a 2-node

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.

Tree height.

Worst case: Ig N [all 2-nodes]

Best case: $log_4 N = 1/2 lg N$ [all 4-nodes]

Between 10 and 20 for a million nodes.

Between 15 and 30 for a billion nodes.

Dynamic set implementations

Worst case running times

Implementation	search	insert	delete	minimum	maximum	successor	predecessor
linked lists	O(n)	O(1)	O(1)	O(n)	O(n)	O(n)	O(n)
ordered array	O(log n)	O(n)	O(n)	O(1)	O(1)	O(log n)	O(log n)
BST	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)
2-3-4 tree	O(log n)	O(log n)					

Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

• Use colors on nodes to represent 3- and 4-nodes.

Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

• Use colors on nodes to represent 3- and 4-nodes.

Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

• Use colors on nodes to represent 3- and 4-nodes.

Properties of red-black trees:

- The root is always black
- All root-to-leaf paths have the same number of black nodes.
- Red nodes do not have red children

Insertion in red-black trees

Insertion: Insert a new red leaf.

What if the parent is also red?

Easy case:

What if both the parent and the grandparent are red?

What if both the parent and the grandparent are red?

What if the parent is also red?

Rotations in red-black trees

Two types of rotations

Rotations in red-black trees

Two types of rotations:

Insertion in red-black tree

Example

Example

Running times in red-black trees

- Time for insertion:
 - Search to bottom after key: O(h)
 - Insert red leaf: O(1)
 - Perform recoloring and rotations on way up: O(h)
 - Can recolor many times (but at most h)
 - At most 2 rotations.
- Total O(h).
- Time for search
 - Same as BST: O(h)
- Height: O(log n)

Dynamic set implementations

Worst case running times

Implementation	search	insert	delete	minimum	maximum	successor	predecessor
linked lists	O(n)	O(1)	O(1)	O(n)	O(n)	O(n)	O(n)
ordered array	O(log n)	O(n)	O(n)	O(1)	O(1)	O(log n)	O(log n)
BST	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)
2-3-4 tree	O(log n)	O(log n)					
red-black tree	O(log n)	O(log n)					

Balanced trees: implementations

Redblack trees:

```
Java: java.util.TreeMap, java.util.TreeSet.
```

C++ STL: map, multimap, multiset.

Linux kernel: linux/rbtree.h.