Balanced Search Trees

2-3-4 trees
red-black trees

References: Algorithms in Java (handout)



Balanced search trees

Dynamic sets
* Search
* Insert
* Delete
* Maximum
e Minimum
e Successor(x) (find minimum element = x)

* Predecessor(x) (find maximum element < x)

This lecture: 2-3-4 trees, red-black trees
Next time: Tiered vektor (not a binary search tree, but maintains a dynamic set).

In two weeks time: Splay trees



Dynamic set implementations

Worst case running times

Implementation search insert delete minimum  maximum  successor predecessor
linked lists O(n) o(1) o) O(n) O(n) O(n) O(n)
ordered array O(log n) O(n) O(n) o(1) o(1) O(log n) O(log n)
BST O(h) O(h) O(h) O(h) O(h) O(h) O(h)

In worst case h=n.
In best case h= log n (fully balanced binary tree)

Today: How to keep the trees balanced.



2-3-4 trees



2-3-4 trees

2-3-4 trees. Allow nodes to have multiple keys.
Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node
e 2-node: one key, 2 children
e 3-node: 2 keys, 3 children
e 4-node: 3 keys, 4 children

smaller ’rhan K Iarger than R
be‘rween/
Kand R

N A

J N Q sv vZ

A N A N A I T A B

B

)

~
-~
—
~
\
-~



Searching in a 2-3-4 tree

Search.
« Compare search key against keys in node.
* Find interval containing search key

» Follow associated link (recursively)

K R

PPN

A /I\ /\

A D FG6J N Q sv Yz
/\ [ 1 \\ /\ /N N 1N N



Searching in a 2-3-4 tree

Search.
« Compare search key against keys in node.
* Find interval containing search key

» Follow associated link (recursively)

Ex. Search for L

between / l
K and R

NN/

/\ /\N [ 1 '\ /T\ /N 1N [ 1N 0N

found L



Predecessor and successor in a 2-3-4 tree

Where is the predecessor of L7

And the successor of L?

KR
K and R
M O

JINTYIN SN

/\ /\N [ 1 '\ /T\ /N 1N [ 1N 0N

found L



Insertion In a 2-3-4 tree

/\ /\N [ 1 \\ /




Insertion In a 2-3-4 tree

Insert.

e Search to bottom for key.

Ex. Insert B

smaller than K

N

smaller than C c E
\//

D

/ \

B

B not found

NVANIAY

O
[ v\ /N /N 1 N NN

10



Insertion In a 2-3-4 tree

Insert.
e Search to bottom for key.

e 2-node at bottom: convert to 3-node

smaller than K

N

EX. |ﬂS€I’tB smaller than C C E M O X
V4 JIN /N
AR D FG1J L N Q sv VYZ
/W /N /1 v\ /N N NN N

B fits here
11



Insertion In a 2-3-4 tree

Insert.

e Search to bottom for key.

larger than R

Ex. Insert X /

C E M O U

AN JIN I

A D FGJ L N Y Z
/\ /\N [ 1 v\ /N [\ / 1\

\

X not foundq2




Insertion In a 2-3-4 tree

Insert.
e Search to bottom for key.
e 2-node at bottom: convert to 3-node

 3-node at bottom: convert to 4-node

K R

larger than R

Ex. Insert X /

//\ /\ /N

FGJ N ST XY Z
1\ /\ / \ /\/l\/|\\

X fits here 413



Insertion In a 2-3-4 tree

Insert.

e Search to bottom for key.

K R

smaller than K

N

/ I\ /N /\

FGJ Nst
/\/I\\ /\ /\/|\/

\

H not found

Ex. Insert H

\

14



Insertion In a 2-3-4 tree

Insert.
e Search to bottom for key.
« 2-node at bottom: convert to 3-node
* 3-node at bottom: convert to 4-node

o A ok
4-node at bottom: ?* K R

smaller than K

N

/ N\ / N \

Ex. Insert H

FGJ Nst
\\/ /\/l\/

\

H does not fit herel

\

15



Splitting a 4-node in a 2-3-4 tree
ldea: split the 4-node to make room
CE
// \ A B D F J
/1N /N /\ \
AB D FGJ

/ 1\ / \ [/ | \ H does fit herel

T

H does not fit here

—_—

CEG
Problem: Doesn’t work if parent is a 4-node / l \
Solution 1: Split the parent (and continue splitting AB D F H
/

while necessary).

Solution 2: Split 4-nodes on the way down.



Splitting 4-nodes in a 2-3-4 tree

|ldea: split 4-nodes on the way down the tree.
 Ensures last node is not a 4-node.

* Transformations to split 4-nodes:

Invariant. Current node is not a 4-node.

Consequence. Insertion at bottom is easy
since it's not a 4-node.

root

BDG
1N

X y z v

17



Insertion In a 2-3-4 tree

Insert.
e Search to bottom for key.
« 2-node at bottom: convert to 3-node
* 3-node at bottom: convert to 4-node

 4-node at bottom: ??

not a 4-node

Ex. Insert H

not a 4-node

18



Insertion In a 2-3-4 tree

Insert.

e Search to bottom for key.

o A ok
4-node at bottom: 7" K R

Ex. Insert H

CEG

AN N N\

/\ /N [ 1N

\

19



Insertion In a 2-3-4 tree

Insert.

e Search to bottom for key.

e 4-node at bottom: 7?7

Ex. Insert H

CEG

//\\

/\

F HT
/ \ 7\ \

20



Splitting 4-nodes in a 2-3-4 tree

L_ocal transformations that work anywhere in the tree.

Ex. Splitting a 4-node attached to a 2-node

could be huge



Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 3-node

DH DHQ

KQW W

\ /
L= AL /

could be huge unchanged




Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree.

Splitting a 4-node attached to a 4-node never happens when we split nodes on
the way down the tree.

Invariant. Current node is not a 4-node.

23



Insertion 2-3-4 trees

/ ER Insert U / ER{ert@. /E|I R\\
ABC HIN s’\ ABC ’\HIN)\ sV ABC
I t G
Insert U Insert G Split nser

Insert T

ETR < Splif /\ E/I\R
/AN AN VAN

ABC ABC GH N suU ABC GH N sSsTU

Insert T

24



Deletions In 2-3-4 trees

Delete minimum:
* minimum always in leftmost leaf

e |f 3- or 4-node: delete key

K R
Ex. Delete minimum
M O X
Ansmmlmum //\ /l\ /\
FGJ L N Q SV YZ
/I\/\/I\\ /N /N 1N /1N 101N

25



Deletions In 2-3-4 trees

Delete minimum:
* minimum always in leftmost leaf

e |f 3- or 4-node: delete key

K R
Ex. Delete minimum
M O X
DeleTeA // \ /l\ /\
FGJ L N Q SV VY[Z
\ /N /N N N

26



Deletions In 2-3-4 trees

Delete minimum:
* minimum always in leftmost leaf

e |f 3- or 4-node: delete key

e 2-n0de?? K R
Ex. Delete minimum
M O X
Delete B9 // \ /l \ / \
F G J L N Q SV VY[Z
\ /N /N N /0N 0N

27



Deletions In 2-3-4 trees

ldea: On the way down maintain the invariant that current node is not a 2-node.

» Child of root and root is a 2-node:

ABC

B
/ 1 \\\ B C
or
\C X Y z w \ /\
/N CDE A B DE
/'\\ / N\ I v\
X y z W
e on the way down: x ly z. w [r s A AA AAL
BF G CFG
PN ANN
CDE AB DE
RN [ 1\ BN : :
BDE DE
Y A\ AN
/N /17 v\

X y z W X y

28



Deletions In 2-3-4 trees

Delete minimum:
* minimum always in leftmost leaf
e |f 3- or 4-node: delete key
« 2-node: split/merge on way down. K R

Ex. Delete minimum

not a 2-node

M O X
L N Q SV YZ
\ LN N N N

29



Deletions In 2-3-4 trees

Delete minimum:
* minimum always in leftmost leaf
e |f 3- or 4-node: delete key
« 2-node: split/merge on way down.

Ex. Delete minimum

KR

30



Deletions In 2-3-4 trees

Delete minimum:
* minimum always in leftmost leaf
e |f 3- or 4-node: delete key
« 2-node: split/merge on way down.

Ex. Delete minimum

E
CD FGJ L N
/ \ A U U A U A

31



Deletions In 2-3-4 trees

Delete:

K R

O\

//\ /I\ /\

FGJ NQSV
/\//\\/ / /l\/l\ 30



Deletions In 2-3-4 trees

Delete:

* During search maintain invariant that current node is not a 2-node

K R

FGJ NQSV
\ / /l\/

//\ /I\ /\

\

33



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node

e [f key is in a leaf: delete key

K R

FGJ NQSV
\ / /l\/

//\ /I\ /\

\

34



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R

FGJ NQSV
1\ / /l\/l\

//\ /I\ /\

35



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K

FGJ NQSV
1\ / /l\/l\

//\ /I\ /\

36



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K

* Find successor

FGJ NQSV
1\ / /l\/l\

//\ /I\ /\

37



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K

* Find successor

FGJ NQSV
1\ / /l\/l\

//\ /I\ /\

38



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K
* Find successor not a 2-node
M O

//\ /\

FGJ L N Q SV
T N WY A /\/l\/l\

39



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
* |[f key isin a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K
* Find successor not a 2-node
M O X

40



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K

* Find successor

//\ /\ /\

FGJ LMN QSV
[ v\ 7\ /\ / /l\/l\

41



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K

* Find successor

e Delete L from leaf

//\ /\ /\

FGJ LMN QSV
[ v\ 7\ /\ / /l\/l\

42



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K

* Find successor

E ) X

DZANVANNA

e Delete L from leaf

FGJ M N Q SV VYZ
/1 v N/ v\ /2 N A [ U A

43



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

K R
Ex. Delete K
* Find successor
e Delete L from leaf O X
* Replace K with L // \ / \ / \
F G J M N Q SV VYZ

[ v\ 7 VN /N /1N N

44



Deletions In 2-3-4 trees

Delete:
* During search maintain invariant that current node is not a 2-node
e [f key is in a leaf: delete key

« Key not in leaf: replace with successor (always leaf in subtree) and delete
successor from leaf.

L R
Ex. Delete K
* Find successor
e Delete L from leaf O X
* Replace K with L // \ / \ / \
F G J M N Q SV VYZ

[ v\ 7 VN /N /1N N

45



2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.

__.o__
0 -
e =a
.‘. ol ® D Q - ... o‘o'.‘i‘o
Ory TN I3 /TS 7 o S o WD, SV » S ; | S 5. W , S . W 5.
\ I 4 {45

O O X OO X X ) X X 0O )CK ) ) 0O X X O X L XX )
n _ . . ,

IIIIIllllIIIIIIIllllIIIIIIIllllIIIIIIIIIIlIIIIIIIIIIllllIIIIIIIlllIIIIIIIIIIIIIIIIIII\III IIIIIIIIII

Tree height.
Worst case: IgN [all 2-nodes]
Best case: log,N=1/2IgN [all 4-nodes]
Between 10 and 20 for a million nodes.

Between 15 and 30 for a billion nodes.

46



Dynamic set implementations

Worst case running times

Implementation search delete  minimum  maximum  successor predecessor
linked lists o(n) o(1) o(1) o(n) o(n) o(n) o(n)
ordered array O(log n) o(n) o(n) o(1) o(1) O(log n) O(log n)
BST o(h) o(h) o(h) o(h) o(h) o(h) o(h)
2-3-4 tree Oflogn)  O(logn)  O@logn)  Ofogn)  O(ogn)  O(log n) O(log n)

a7



Red-black trees



Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

» Use colors on nodes to represent 3- and 4-nodes.

GKO

[/ \\

HL

/1N

B

/ N\

!4

!

?

o n
P
°

2N

49



Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

» Use colors on nodes to represent 3- and 4-nodes.

//\\z;c\ /l\z)(‘“’x

* Connection between 2-3-4 trees and red-black trees:

ER

RN

AAC HIN S

dd by dbby b

50



Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

» Use colors on nodes to represent 3- and 4-nodes.

//\\z;c\ /l\zﬂ“’x

* Connection between 2-3-4 trees and red-black trees:

ER

RN

AAC HIN S

dd by dbby b

51



Red-black tree

Properties of red-black trees:
e The root is always black
 All root-to-leaf paths have the same number of black nodes.

 Red nodes do not have red children

52



Red-black tree

Connection between 2-3-4 trees and red-black trees:

ER
AAC HIN S

Jdbh dbby bk

53



Red-black tree

Connection between 2-3-4 trees and red-black trees:

ER

AN

AAC HIN S

Jdbh dbby bk

54



Red-black tree

Connection between 2-3-4 trees and red-black trees:

ER

AN

AAC HIN S

Jdbh dbby bk

or

55



INnsertion In red-black trees

Insertion: Insert a new red leaf.

@
/

Insert C

Aﬁ' H

¢

e

56



Red-black tree: Parent Is red

What if the parent is also red?

Easy case:




Red-black tree: Parent Is red

What if both the parent and the grandparent are red?

2?7




Red-black tree: Parent Is red

What if both the parent and the grandparent are red?

recurse

/




Red-black tree: Parent Is red

What if the parent is also red?

??



Rotations In red-black trees

Two types of rotations
a / ? ? >
b a b ¢ d
c d
a a
b
d
C d
b C
61



Rotations In red-black trees

Two types of rotations:

a ‘ ! d Q !
b a b c d ¢ a b c d
a b
c d
a a d d
b d ¢
d a b
b c c d b c

62



Insertion In red-black tree

Insert x:
Search to bottom after key (x)
Insert red leaf
Balance: 3 cases (+ symmetric)

‘~ Keep
balancing
Z ~ with z
z
z,
z,
Z—> A

63



Example

;;;EIHSZPTU ;E;E /

Insert V

Rotate U
—
64



Example

Rotate I Rotate I

S

65



Running times in red-black trees

Time for insertion:
« Search to bottom after key: O(h)
* Insert red leaf: O(1)
* Perform recoloring and rotations on way up: O(h)
* Can recolor many times (but at most h)
* At most 2 rotations.
Total O(h).

Time for search
 Same as BST: O(h)

Height: O(log n)

66



Dynamic set implementations

Worst case running times

Implementation

search

delete

minimum

maximum

Successor

predecessor

linked lists

ordered array

BST

2-3-4 tree

red-black tree

O(1)

O(n)

O(h)

O(log n)

O(log n)

67



Balanced trees: implementations

Redblack trees:
Java: java.util.TreeMap, java.util.TreeSet.
C++ STL: map, multimap, multiset.

Linux kernel: linux/rbtree.h.

68



