P and NP

Inge Li Gørtz

Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides

Warm Up: Super Hard Problems

- · Undecidable. No algorithm possible.
- Example. Halt (P, x) = true iff and only if P halts on input x.
- Claim. There is no general algorithm to solve Halt(P, x)
- · Proof (by contradiction)
 - Suppose algorithm for Halt(P, x) exists.
 - Consider algorithm A(P) which loops infinitely if Halt(P,P) and otherwise halts.
 - Since Halt(P,x) exists for all algorithms P we can use it on A(A) and the following happens:
 - · If Halt(A,A) then we loop infinitely.
 - Else (not Halt(A,A)) we halt.

Overview

- · Problem classification
 - Tractable
 - Intractable
- Reductions
 - · Tools for classifying problems according to relative hardness

2

Problem Classification

- Q. Which problems will we be able to solve in practice?
- A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

Yes	No
Shortest path	Longest path
Min cut	Max cut
Soccer championship (2-point rule)	Soccer championship (3-point rule)
Primality testing	Factoring

Problem Classification

- Ideally, classify problems according to those that can be solved in polynomial-time and those that cannot.
- · Provably requires exponential-time.
 - Given a board position in an n-by-n generalization of chess, can black guarantee a win?
- · Provably undecidable.
 - Given a program and input there is no algorithm to decide if program halts.
- Frustrating news. Huge number of fundamental problems have defied classification for decades.

5

Instances

- A problem (problem type) is the general, abstract term:
 - Examples: Shortest Path, Maximum Flow, Closest Pair, Sequence Alignment, String Matching.
- A problem instance is the concrete realization of a problem.
 - · Maximum flow. The instance consists of a flow network.
 - · Closest Pair. The instance is a set of points
 - · String Matching. The instance consists of two strings.

Polynomial-time Reductions

Polynomial-time reduction

- Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
 - · Polynomial number of standard computational steps, plus
 - · Polynomial number of calls to oracle that solves problem Y.
- Notation. X ≤_P Y.
- We pay for time to write down instances sent to black box ⇒ instances of Y must be of polynomial size.

Maximum flow and bipartite matching

Bipartite matching ≤_P Maximum flow

9

Maximum flow and maximum bipartite matching

- Bipartite matching ≤_P Maximum flow
 - Matching M => flow of value |M|
 - Flow of value v(f) => matching of size v(f)

10

Polynomial-time reductions

- Purpose. Classify problems according to relative difficulty.
 - Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
 - Establish intractability. If X ≤_P Y and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.
 - Establish equivalence. If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X =_P Y$.

up to a polynomial factor

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size ≥ k?
- · Example:
 - Is there an independent set of size ≥ 6?

12

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size > k?
- · Example:
 - Is there an independent set of size ≥ 6? Yes

13

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size ≥ k?
- Example:
 - Is there an independent set of size ≥ 6? Yes
 - Is there an independent set of size ≥ 7? No

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size > k?
- · Example:
 - Is there an independent set of size ≥ 6? Yes
 - Is there an independent set of size ≥ 7?

Independent set and vertex cover

- Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size ≤ k?
- · Example:
 - Is there a vertex cover of size ≤ 4?

Independent set and vertex cover

- Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size ≤ k?
- · Example:
 - Is there a vertex cover of size ≤ 4? Yes

17

Independent set and vertex cover

- · Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size ≤ k?
- Example:
 - Is there a vertex cover of size ≤ 4? Yes
 - Is there a vertex cover of size ≤ 3? No

Independent set and vertex cover

- · Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size ≤ k?
- · Example:
 - Is there a vertex cover of size ≤ 4? Yes
 - Is there a vertex cover of size ≤ 3?

Independent set and vertex cover

- Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
 - =>: S is an independent set.

2

Independent set and vertex cover

- Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- · Proof.
 - =>: S is an independent set.
 - e cannot have both endpoints in S => e have an endpoint in V-S.
 - · V-S is a vertex cover.

21

23

Independent set and vertex cover

- Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
 - =>: S is an independent set.
 - e cannot have both endpoints in S => e have an endpoint in V-S.
 - · V-S is a vertex cover
 - <=: V-S is a vertex cover.</p>

22

Independent set and vertex cover

- Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- · Proof.
 - =>: S is an independent set.
 - e cannot have both endpoints in S => e have an endpoint in V-S.
 - · V-S is a vertex cover
 - <=: V-S is a vertex cover.
 - u and v not part of the vertex cover = > no edge between u and v
 - · S is an independent set.

Independent set and vertex cover

- Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- · Independent set ≤P vertex cover
 - Use one call to the black box vertex cover algorithm with k = n-k.
 - There is an independent set of size ≥ k if and only if the vertex cover algorithm returns yes.
- · vertex cover ≤P independent set
 - Use one call to the black box independent set algorithm with k = n-k.

Set cover

 Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

25

Set cover

- Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- Example:
 - · Does there exist a set cover of size at most 6? Yes

Set cover

- Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- Example:
 - · Does there exist a set cover of size at most 6?

26

Set cover

- Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- Example:
 - · Does there exist a set cover of size at most 6? Yes

Set cover

- Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- · Example:
 - · Does there exist a set cover of size at most 6? Yes
 - Does there exist a set cover of size at most 4?

Set cover

- Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- Example:
 - · Does there exist a set cover of size at most 6? Yes
 - · Does there exist a set cover of size at most 4? Yes
 - Does there exist a set cover of size at most 3? No

Set cover

- Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- · Example:
 - · Does there exist a set cover of size at most 6? Yes
 - · Does there exist a set cover of size at most 4? Yes

Reduction from vertex cover to set cover

vertex cover ≤P set cover

Reduction from vertex cover to set cover

- vertex cover ≤p set cover
- $U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}, \}$
- $S_1 = \{e_1, e_2, e_3, e_4\}$
- $S_2 = \{e_1, e_{11}, e_{10}\}$
- $S_3 = \{e_2, e_8\}$
- $S_4 = \{e_3, e_9\}$
- $S_5 = \{e_4, e_5\}$
- $S_6 = \{e_5, e_6, e_7\}$
- $S_7 = \{e_7, e_{13}\}$
- $S_8 = \{e_8, e_9, e_{10}, e_{12}, e_{13}, e_{14}\}$
- $S_9 = \{e_{11}, e_{12}\}$
- $S_{10} = \{e_6, e_{14}\}$

33

P and NP

Polynomial-time reductions

- Reduction. X ≤_P Y if arbitrary instances of problem X can be solved using:
 - · Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem Y.
- Strategy to make a reduction if we only need one call to the oracle/black box to solve X:
 - Show how to turn (any) instance S_x of X into an instance of S_y of Y in polynomial time.
 - 2. Show that: S_x a yes instance of $X \Rightarrow S_y$ a yes instance of Y.
 - 3. Show that: S_y a yes instance to $Y => S_x$ a yes instance of X.
- · Reductions that needs more than one call to black box:
 - 1. Show how to turn (any) instance S_x of X into a polynomial number instance of $S_{y,i}$ of Y in polynomial time.
 - 2. Show: S_x a yes instance of X => one of the instances $S_{y,i}$ is a yes instance of Y.
 - 3. Show: one of the instances $S_{y,i}$ is a yes instance of $Y \Rightarrow S_x$ a yes instance of X.

The class P

- P ~ problems solvable in deterministic polynomial time.
 - Given a problem type X, there is a deterministic algorithm A which for every
 problem instance I ∈ X solves I in a time that is polynomial in |I|, the size of I.
 - I.e., the running time of A is O(|I|^k) for all I ∈ X, where k is constant independent of the instance I.
- · Examples.
 - Closest pair: There is an algorithm A such that for every set S of points, A finds a closest pair in time O(|S|²).
 - Maximum flow: There is an algorithm A such that for any network, A finds a
 maximum flow in time O(|V|3), where V is the set of vertices.

Hard problems: Example

 Problem [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?

• Best known solution: create all 2ⁿ subsets and check each one.

39

The class NP

- · Certifier. Algorithm B(s,t) is an efficient certifier for problem X if:
 - 1. B(s,t) runs in polynomial time.
 - 2. For every instance s: s is a yes instance of X

 \Leftrightarrow

there exists a certificate t of length polynomial in s and B(s,t) returns yes.

- · Example. Independent set.
 - s: a graph G and an integer k.
 - · t: a set of vertices from G.
 - B(s,t) returns yes if and only if t is an independent set of G and $|S| \ge k$.
 - This can be checked in polynomial time by checking that no two vertices in t are neighbors and that the size is at least k.
- A problem X is in the class NP (Non-deterministic Polynomial time) if X has an
 efficient certifier.

Hard problems

- · Many problems share the above features
 - Can be solved in time 2^{|T|} (by trying all possibilities.)
 - Given a potential solution, it can be checked in time O(|I|^k), whether it is a solution or not.
- · These problems are called polynomially checkable.
- · A solution can be guessed, and then verified in polynomial time.

Optimization vs decision problems

- · Consider decision problems (yes-no-problems).
- · Example.
 - [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?
- · Optimization vs decision problem
 - [OPTIMIZATION LONGEST PATH] Given a graph G. What is the length of the longest simple path?
 - [DECISION LONGEST PATH] Given a graph G and integer k. Is a there a simple path of length ≥ k?
- Exercise. Show that OPTIMIZATION LONGEST PATH can be solved in polynomial time if and only if DECISION LONGEST PATH can be solved in polynomial time.

P vs NP

- · P solvable in deterministic polynomial time.
- NP solvable in non-deterministic polynomial time/ has an efficient (polynomial time) certifier.
- P⊆NP (every problem T which is in P is also in NP).
- It is not known (but strongly believed) whether the inclusion is proper, that is whether there is a problem in NP which is not in P.
- There is subclass of NP which contains the hardest problems, NP-complete problems:
 - · X is NP-Complete if
 - $X \in NP$
 - $Y \leq_P X$ for all $Y \in NP$

41

NP-complete problems

- [SOCCER CHAMPIONSHIP 3-POINT RULE] In a football league n teams compete for the championship. The leagues uses the 3-point rule, i.e., the points of match are distributed as 3:0, 1:1, or 0:3.
 - Input. The table with the points of every team at some point in the season, a list of the matches to be played in that season and the name of some team.
 - · Output.
 - · YES if the named team still can become champion
 - · NO otherwise.

Examples of NP-complete problems

- · Preparing potato soup
- · Packing your suitcase
- · Satisfiability of clauses
- Partition
- Subset-sum
- · Hamilton Cycle
- · Travelling Salesman
- Bin Packing
- Knapsack
- Clique
- · Independent Set
- · Vertex Cover
- · Set Cover

42

NP-complete problems

- [SATISFIABILITY]
 - Input: A set of clauses $C = \{c1, ..., ck\}$ over n boolean variables x1,...,xn.
 - · Output:
 - YES if there is a satisfying assignment, i.e., if there is an assignment a: $\{x_1,...,x_n\} \rightarrow \{0,1\}$ such that every clause is satisfied,
 - · NO otherwise.

instance s

 $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

proposed solution/certificate t

NP-complete problems

- [HAMILTONIAN CYCLE].
 - · Input: Undirected graph G
 - · Output:
 - YES if there exists a simple cycle that visits every node
 - NO otherwise

45

• Traveling Salesperson Problem TSP: Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length ≤ D?

.

• Traveling Salesperson Problem TSP: Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length ≤ D?

How to prove a problem is NP-complete

- 1. Prove $Y \in NP$ (that it can be verified in polynomial time).
- 2. Select a known NP-complete problem X.
- 3. Give a polynomial time reduction from X to Y (prove $X \leq_P Y$):
 - Explain how to turn an instance of X into one or more instances of Y
 - Explain how to use a polynomial number of calls to the black box algorithm/ oracle for Y to solve X.
 - Prove/argue that the reduction is correct.

Reduction example

- [HAMILTONIAN CYCLE]. Given a undirected graph G=(V,E), does there exists a simple cycle that visits every node?
- [TRAVELLING SALESMAN (TSP)] Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length ≤ D?
- Show Hamiltonian Cycle ≤_P TSP:
 - Idea: For every instance of Hamiltonian Cycle create an instance of TSP such that the TSP instance has tour of length ≤ n if and only if G has a Hamiltonian cycle.
- · Reduction.
 - Given instance G=(V,E) of Hamiltonian Cycle, create n cities with distance function

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

• TSP instance has tour of length \leq n if and only if G has a Hamiltonian cycle.

49

51

Reduction example

- · Let G = (E, V) a directed graph.
 - Make one glass for every node $i \in V$.
 - If (i, j) ∈ E ensure:

• If (i, j) ∉ E ensure:

- · Glass i is red, glass j is yellow.
- Height of the cupboard is |V| 1 + height of glass

Reduction example

• [GLASSES IN A CUPBOARD]. You have n glasses of equal height. If glass g_i is put into glass g_i let d_{ij} be the amount of g_i above the rim of g_i . You want to stack them into a single stack, so they fit into a cupboard of height h; is that possible?

- · Glasses in a Cupboard in NP: Proposed solution can be verified in polynomial time.
- · NP-completeness:
 - · Reduction from Directed Hamiltonian Path (DHP).
 - Directed Hamiltonian Path: Given a directed graph G, is there a directed simple path visiting all vertices.
 - DHP is NP-complete
 - Reduction: For every instance (graph) of DHP make a set of glasses and a cupboard, such that the glasses can be stacked into the cupboard if and only if the graph has a Hamiltonian path.

50

Reduction Example

The Main Question: P Versus NP

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the certification problem?
 - Clay \$1 million prize.

• Consensus opinion on P = NP? Probably no.