
P and NP
Inge Li Gørtz

Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides �1

• Problem classification

• Tractable

• Intractable

• Reductions

• Tools for classifying problems according to relative hardness

Overview

�2

• Undecidable. No algorithm possible.

• Example. Halt (P, x) = true iff and only if P halts on input x.

• Claim. There is no general algorithm to solve Halt(P, x)

• Proof (by contradiction)

• Suppose algorithm for Halt(P, x) exists.

• Consider algorithm A(P) which loops infinitely if Halt(P,P) and otherwise halts.

• Since Halt(P,x) exists for all algorithms P we can use it on A(A) and the following

happens:

• If Halt(A,A) then we loop infinitely.

• Else (not Halt(A,A)) we halt.

Warm Up: Super Hard Problems

�3

• Q. Which problems will we be able to solve in practice?

• A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953,

Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]  

Problem Classification

Yes No

Shortest path Longest path

Min cut Max cut

Soccer championship (2-point rule) Soccer championship (3-point rule)

Primality testing Factoring

�4

• Ideally, classify problems according to those that can be solved in polynomial-time
and those that cannot.

• Provably requires exponential-time.

• Given a board position in an n-by-n generalization of chess, 

can black guarantee a win?

• Provably undecidable.

• Given a program and input there is no algorithm to decide if program halts.

• Frustrating news. Huge number of fundamental problems have defied classification
for decades.

Problem Classification

�5

Polynomial-time Reductions

�6

• A problem (problem type) is the general, abstract term:

• Examples: Shortest Path, Maximum Flow, Closest Pair, Sequence Alignment,

String Matching.

• A problem instance is the concrete realization of a problem.

• Maximum flow. The instance consists of a flow network.

• Closest Pair. The instance is a set of points

• String Matching. The instance consists of two strings.

Instances

�7

• Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of
problem X can be solved using:

• Polynomial number of standard computational steps, plus

• Polynomial number of calls to oracle that solves problem Y.

• Notation. X ≤P Y.

• We pay for time to write down instances sent to black box ⇒ instances of Y must

be of polynomial size.

Polynomial-time reduction

�8

• Bipartite matching ≤P Maximum flow

Maximum flow and bipartite matching

�9

1

1

1

1
1

1

1

s t

1

Maximum flow and maximum bipartite matching

�10

1

1

1

1
1

1

1

s t

1

• Bipartite matching ≤P Maximum flow

• Matching M => flow of value |M|

• Flow of value v(f) => matching of size v(f)

• Purpose. Classify problems according to relative difficulty.

• Design algorithms. If X ≤P Y and Y can be solved in polynomial-time, then
X can also be solved in polynomial time.

• Establish intractability. If X ≤P Y and X cannot be solved in polynomial-time,
then Y cannot be solved in polynomial time.

• Establish equivalence. If X ≤P Y and Y ≤P X, we use notation X =P Y.

Polynomial-time reductions

up to a
polynomial factor

�11

• Independent set: A set S of vertices where no two vertices of S are neighbors (joined
by an edge).

• Independent set problem: Given graph G and an integer k, is there an independent
set of size ≥ k?

• Example:

• Is there an independent set of size ≥ 6?

Independent set and vertex cover

�12

• Independent set: A set S of vertices where no two vertices of S are neighbors (joined
by an edge).

• Independent set problem: Given graph G and an integer k, is there an independent
set of size ≥ k?

• Example:

• Is there an independent set of size ≥ 6? Yes

Independent set and vertex cover

�13

• Independent set: A set S of vertices where no two vertices of S are neighbors (joined
by an edge).

• Independent set problem: Given graph G and an integer k, is there an independent
set of size ≥ k?

• Example:

• Is there an independent set of size ≥ 6? Yes

• Is there an independent set of size ≥ 7?

Independent set and vertex cover

�14

• Independent set: A set S of vertices where no two vertices of S are neighbors (joined
by an edge).

• Independent set problem: Given graph G and an integer k, is there an independent
set of size ≥ k?

• Example:

• Is there an independent set of size ≥ 6? Yes

• Is there an independent set of size ≥ 7? No

Independent set and vertex cover

�15

• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of

size ≤ k?

• Example:

• Is there a vertex cover of size ≤ 4?

Independent set and vertex cover

�16

• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of

size ≤ k?

• Example:

• Is there a vertex cover of size ≤ 4? Yes

Independent set and vertex cover

�17

• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of

size ≤ k?

• Example:

• Is there a vertex cover of size ≤ 4? Yes

• Is there a vertex cover of size ≤ 3?

Independent set and vertex cover

�18

• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of

size ≤ k?

• Example:

• Is there a vertex cover of size ≤ 4? Yes

• Is there a vertex cover of size ≤ 3? No

Independent set and vertex cover

�19

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Proof.

• =>: S is an independent set.

Independent set and vertex cover

vertex cover

independent set

�20

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Proof.

• =>: S is an independent set.

• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover.

Independent set and vertex cover

e

vertex cover

independent set

�21

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Proof.

• =>: S is an independent set.

• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover

• <=: V-S is a vertex cover.

Independent set and vertex cover

vertex cover

independent set

�22

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Proof.

• =>: S is an independent set.

• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover

• <=: V-S is a vertex cover.

• u and v not part of the vertex cover = > no edge between u and v

• S is an independent set.

Independent set and vertex cover

u v

vertex cover

independent set

�23

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Independent set ≤P vertex cover

• Use one call to the black box vertex cover algorithm with k = n-k.

• There is an independent set of size ≥ k if and only if the vertex cover algorithm

returns yes.

• vertex cover ≤P independent set

• Use one call to the black box independent set algorithm with k = n-k.

Independent set and vertex cover

�24

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

Set cover

�25

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6?

Set cover

�26

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

Set cover

�27

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

Set cover

�28

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4?

Set cover

�29

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4? Yes

Set cover

�30

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4? Yes

• Does there exist a set cover of size at most 3? No

Set cover

�31

• vertex cover ≤P set cover

Reduction from vertex cover to set cover

1
2

3

4

5
6

7

8

9

10

e5

e4

e3

e7

e13 e14

e12
e10

e11

e6

e9

e8

e1

e2

�32

• vertex cover ≤P set cover

• U = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14,}

• S1 = {e1, e2, e3, e4}

• S2 = {e1, e11, e10}

• S3 = {e2, e8}

• S4 = {e3, e9}

• S5 = {e4, e5}

• S6 = {e5, e6, e7}

• S7 = {e7, e13}

• S8 = {e8, e9, e10, e12, e13, e14}

• S9 = {e11, e12}

• S10 = {e6, e14}

Reduction from vertex cover to set cover

1
2

3

4

5
6

7

8

9

10

e5

e4

e3

e7

e13 e14

e12
e10

e11

e6

e9

e8

e1

e2

�33

• Reduction. X ≤P Y if arbitrary instances of problem X can be solved using:

• Polynomial number of standard computational steps, plus

• Polynomial number of calls to oracle that solves problem Y.

• Strategy to make a reduction if we only need one call to the oracle/black box to
solve X:

1. Show how to turn (any) instance Sx of X into an instance of Sy of Y in
polynomial time.

2. Show that: Sx a yes instance of X => Sy a yes instance of Y.

3. Show that: Sy a yes instance to Y => Sx a yes instance of X.

• Reductions that needs more than one call to black box:

1. Show how to turn (any) instance Sx of X into a polynomial number instance of

Sy,i of Y in polynomial time.

2. Show: Sx a yes instance of X => one of the instances Sy,i is a yes instance of Y.

3. Show: one of the instances Sy,i is a yes instance of Y => Sx a yes instance of

X.

Polynomial-time reductions

P and NP

�35

• P ~ problems solvable in deterministic polynomial time.

• Given a problem type X, there is a deterministic algorithm A which for every

problem instance I ∈ X solves I in a time that is polynomial in |I|, the size of I.

• I.e., the running time of A is O(|I|k) for all I ∈ X, where k is constant independent of

the instance I.

• Examples.

• Closest pair: There is an algorithm A such that for every set S of points, A finds a

closest pair in time O(|S|2).

• Maximum flow: There is an algorithm A such that for any network, A finds a

maximum flow in time O(|V|3), where V is the set of vertices.

The class P

�36

• Problem [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo
bag with n potatoes. Can one select some of them such that their weight is exactly
B grams?

• Best known solution: create all 2n subsets and check each one.

Hard problems: Example

�37

• Many problems share the above features

• Can be solved in time 2|T| (by trying all possibilities.)

• Given a potential solution, it can be checked in time O(|I|k), whether it is a

solution or not.  

• These problems are called polynomially checkable.

• A solution can be guessed, and then verified in polynomial time.

Hard problems

�38

• Certifier. Algorithm B(s,t) is an efficient certifier for problem X if:

1. B(s,t) runs in polynomial time.

2. For every instance s:

• Example. Independent set.

• s: a graph G and an integer k.

• t: a set of vertices from G.

• B(s,t) returns yes if and only if t is an independent set of G and |S| ≥ k.

• This can be checked in polynomial time by checking that no two vertices in t are

neighbors and that the size is at least k.

• A problem X is in the class NP (Non-deterministic Polynomial time) if X has an
efficient certifier.

The class NP

s is a yes instance of X
⇔

there exists a certificate t of length polynomial in s and B(s,t) returns yes.

�39

• Consider decision problems (yes-no-problems).

• Example.

• [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag
with n potatoes. Can one select some of them such that their weight is exactly B
grams?

• Optimization vs decision problem

• [OPTIMIZATION LONGEST PATH] Given a graph G. What is the length of the

longest simple path?

• [DECISION LONGEST PATH] Given a graph G and integer k. Is a there a simple

path of length ≥ k?

• Exercise. Show that OPTIMIZATION LONGEST PATH can be solved in polynomial
time if and only if DECISION LONGEST PATH can be solved in polynomial time.

Optimization vs decision problems

�40

• P solvable in deterministic polynomial time.

• NP solvable in non-deterministic polynomial time/ has an efficient (polynomial time)

certifier.

• P⊆NP (every problem T which is in P is also in NP).

• It is not known (but strongly believed) whether the inclusion is proper, that is whether

there is a problem in NP which is not in P.

• There is subclass of NP which contains the hardest problems, NP-complete

problems:

• X is NP-Complete if

• X ∈ NP

• Y ≤P X for all Y ∈ NP

P vs NP

�41

• Preparing potato soup

• Packing your suitcase

• Satisfiability of clauses

• Partition

• Subset-sum

• Hamilton Cycle

• Travelling Salesman

• Bin Packing

• Knapsack

• Clique

• Independent Set

• Vertex Cover

• Set Cover

Examples of NP-complete problems

�42

• [SOCCER CHAMPIONSHIP 3-POINT RULE] In a football league n teams compete
for the championship. The leagues uses the 3-point rule, i.e., the points of match are
distributed as 3:0, 1:1, or 0:3.

• Input. The table with the points of every team at some point in the season, a list

of the matches to be played in that season and the name of some team.

• Output.

• YES if the named team still can become champion

• NO otherwise.

NP-complete problems

�43

• [SATISFIABILITY]

• Input: A set of clauses C = {c1, . . . , ck} over n boolean variables x1,…,xn.

• Output:

• YES if there is a satisfying assignment, i.e., if there is an assignment
a: {x1,...,xn} ︎→ {0,1} such that every clause is satisfied,

• NO otherwise.

NP-complete problems

€

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4() ∧ x1 ∨ x3 ∨ x4()

€

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

proposed solution/certificate t

�44

• [HAMILTONIAN CYCLE].

• Input: Undirected graph G

• Output:

• YES if there exists a simple cycle that visits every node

• NO otherwise

NP-complete problems

instance s certificate t

�45

• Traveling Salesperson Problem TSP: Given a set of n cities and a pairwise
distance function d(u, v), is there a tour of length ≤ D?

All 13,509 cities in US with a population of at least 500  
Reference: http://www.tsp.gatech.edu

�46

• Traveling Salesperson Problem TSP: Given a set of n cities and a pairwise
distance function d(u, v), is there a tour of length ≤ D?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

�47

1. Prove Y ∈ NP (that it can be verified in polynomial time).

2. Select a known NP-complete problem X.

3. Give a polynomial time reduction from X to Y (prove X ≤P Y):

• Explain how to turn an instance of X into one or more instances of Y

• Explain how to use a polynomial number of calls to the black box algorithm/

oracle for Y to solve X.

• Prove/argue that the reduction is correct.

How to prove a problem is NP-complete

�48

• [HAMILTONIAN CYCLE]. Given a undirected graph G=(V,E), does there exists a
simple cycle that visits every node?

• [TRAVELLING SALESMAN (TSP)] Given a set of n cities and a pairwise distance
function d(u, v), is there a tour of length ≤ D?

• Show Hamiltonian Cycle ≤P TSP:

• Idea: For every instance of Hamiltonian Cycle create an instance of TSP such

that the TSP instance has tour of length ≤ n if and only if G has a Hamiltonian
cycle.

• Reduction.

• Given instance G=(V,E) of Hamiltonian Cycle, create n cities with distance

function

• TSP instance has tour of length ≤ n if and only if G has a Hamiltonian cycle.

Reduction example

€

d(u, v) =
 1 if (u, v) ∈ E
 2 if (u, v) ∉ E
$
%
&

�49

• [GLASSES IN A CUPBOARD]. You have n glasses of equal height. If glass gj is put
into glass gi let dij be the amount of gj above the rim of gi. You want to stack them
into a single stack, so they fit into a cupboard of height h; is that possible?

• Glasses in a Cupboard in NP: Proposed solution can be verified in polynomial time.

• NP-completeness:

• Reduction from Directed Hamiltonian Path (DHP).

• Directed Hamiltonian Path: Given a directed graph G, is there a directed simple

path visiting all vertices.

• DHP is NP-complete

• Reduction: For every instance (graph) of DHP make a set of glasses and a

cupboard, such that the glasses can be stacked into the cupboard if and only if
the graph has a Hamiltonian path.

Reduction example

�50

• Let G = (E, V) a directed graph.

• Make one glass for every node i ∈ V.

• ︎ If (i, j) ∈ E ensure:

• If (i, j) ∉ E ensure:

• Glass i is red, glass j is yellow.

• Height of the cupboard is |V| − 1 + height of glass

Reduction example

�51

Reduction Example

�52

Reduction Example

�53

The Main Question: P Versus NP

• Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

• Is the decision problem as easy as the certification problem?

• Clay $1 million prize.

• Consensus opinion on P = NP? Probably no.

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

�54

