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• Problem classification

• Tractable

• Intractable


• Reductions

• Tools for classifying problems according to relative hardness

Overview
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• Undecidable. No algorithm possible.

• Example. Halt (P, x) = true iff and only if P halts on input x. 

• Claim. There is no general algorithm to solve Halt(P, x)


• Proof (by contradiction) 

• Suppose algorithm for Halt(P, x) exists.

• Consider algorithm A(P) which loops infinitely if Halt(P,P) and otherwise halts. 

• Since Halt(P,x) exists for all algorithms P we can use it on A(A) and the following 

happens:

• If Halt(A,A) then we loop infinitely.

• Else (not Halt(A,A)) we halt. 

Warm Up: Super Hard Problems
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• Q.  Which problems will we be able to solve in practice?

• A. Those with polynomial-time algorithms.  (working definition)  [von Neumann 1953, 

Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]  

Problem Classification

Yes No

Shortest path Longest path

Min cut Max cut

Soccer championship (2-point rule) Soccer championship (3-point rule)

Primality testing Factoring
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• Ideally, classify problems according to those that can be solved in polynomial-time 
and those that cannot.


• Provably requires exponential-time.

• Given a board position in an n-by-n generalization of chess, 

can black guarantee a win?


• Provably undecidable.

• Given a program and input there is no algorithm to decide if program halts.


• Frustrating news.  Huge number of fundamental problems have defied classification 
for decades.

Problem Classification
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Polynomial-time Reductions
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• A problem (problem type) is the general, abstract term: 

• Examples: Shortest Path, Maximum Flow, Closest Pair, Sequence Alignment, 

String Matching. 


• A problem instance is the concrete realization of a problem. 

• Maximum flow. The instance consists of a flow network. 

• Closest Pair. The instance is a set of points 

• String Matching. The instance consists of two strings.

Instances
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• Reduction.  Problem X polynomial reduces to problem Y if arbitrary instances of 
problem X can be solved using:

• Polynomial number of standard computational steps, plus

• Polynomial number of calls to oracle that solves problem Y.


• Notation.  X ≤P Y. 

• We pay for time to write down instances sent to black box  ⇒  instances of Y must 

be of polynomial size.

Polynomial-time reduction
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• Bipartite matching ≤P Maximum flow

Maximum flow and bipartite matching
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Maximum flow and maximum bipartite matching
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• Bipartite matching ≤P Maximum flow

• Matching M => flow of value |M|

• Flow of value v(f) => matching of size v(f)



• Purpose. Classify problems according to relative difficulty.


• Design algorithms. If X ≤P Y and Y can be solved in polynomial-time, then 
X can also be solved in polynomial time.


• Establish intractability. If X ≤P Y and X cannot be solved in polynomial-time, 
then Y cannot be solved in polynomial time.


• Establish equivalence. If X ≤P Y and Y ≤P X, we use notation X =P Y.

Polynomial-time reductions

up to a 
polynomial factor
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• Independent set: A set S of vertices where no two vertices of S are neighbors (joined 
by an edge).


• Independent set problem: Given graph G and an integer k, is there an independent 
set of size ≥ k? 


• Example:

• Is there an independent set of size ≥ 6?

Independent set and vertex cover
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• Independent set: A set S of vertices where no two vertices of S are neighbors (joined 
by an edge).


• Independent set problem: Given graph G and an integer k, is there an independent 
set of size ≥ k? 


• Example:

• Is there an independent set of size ≥ 6?  Yes

Independent set and vertex cover
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• Independent set: A set S of vertices where no two vertices of S are neighbors (joined 
by an edge).


• Independent set problem: Given graph G and an integer k, is there an independent 
set of size ≥ k? 


• Example:

• Is there an independent set of size ≥ 6?  Yes

• Is there an independent set of size ≥ 7?

Independent set and vertex cover
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• Independent set: A set S of vertices where no two vertices of S are neighbors (joined 
by an edge).


• Independent set problem: Given graph G and an integer k, is there an independent 
set of size ≥ k? 


• Example:

• Is there an independent set of size ≥ 6?  Yes

• Is there an independent set of size ≥ 7?  No

Independent set and vertex cover
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• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of 

size ≤ k? 


• Example:

• Is there a vertex cover of size ≤ 4?

Independent set and vertex cover
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• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of 

size ≤ k? 


• Example:

• Is there a vertex cover of size ≤ 4? Yes

Independent set and vertex cover
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• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of 

size ≤ k? 


• Example:

• Is there a vertex cover of size ≤ 4? Yes

• Is there a vertex cover of size ≤ 3?

Independent set and vertex cover
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• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of 

size ≤ k? 


• Example:

• Is there a vertex cover of size ≤ 4? Yes

• Is there a vertex cover of size ≤ 3? No

Independent set and vertex cover
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• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its 
complement V-S is a vertex cover.


• Proof.

• =>: S is an independent set.

Independent set and vertex cover

vertex cover

independent set
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• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its 
complement V-S is a vertex cover.


• Proof.

• =>: S is an independent set.


• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover.

Independent set and vertex cover

e

vertex cover

independent set

�21



• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its 
complement V-S is a vertex cover.


• Proof.

• =>: S is an independent set.


• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover


• <=: V-S is a vertex cover.

Independent set and vertex cover

vertex cover

independent set
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• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its 
complement V-S is a vertex cover.


• Proof.

• =>: S is an independent set.


• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover


• <=: V-S is a vertex cover.

• u and v not part of the vertex cover = > no edge between u and v

• S is an independent set.

Independent set and vertex cover

u v

vertex cover

independent set
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• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its 
complement V-S is a vertex cover.


• Independent set ≤P vertex cover

• Use one call to the black box vertex cover algorithm with k = n-k.

• There is an independent set of size ≥ k if and only if the vertex cover algorithm 

returns yes. 


• vertex cover ≤P independent set

• Use one call to the black box independent set algorithm with k = n-k.

Independent set and vertex cover
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• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U, 
and an integer k. Does there exist a collection of at most k sets whose union is 
equal to all of U?

Set cover
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S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U, 
and an integer k. Does there exist a collection of at most k sets whose union is 
equal to all of U?


• Example:

• Does there exist a set cover of size at most 6?

Set cover
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S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U, 
and an integer k. Does there exist a collection of at most k sets whose union is 
equal to all of U?


• Example:

• Does there exist a set cover of size at most 6? Yes

Set cover
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S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U, 
and an integer k. Does there exist a collection of at most k sets whose union is 
equal to all of U?


• Example:

• Does there exist a set cover of size at most 6? Yes

Set cover
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S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U, 
and an integer k. Does there exist a collection of at most k sets whose union is 
equal to all of U?


• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4? 

Set cover
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S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U, 
and an integer k. Does there exist a collection of at most k sets whose union is 
equal to all of U?


• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4? Yes

Set cover
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S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U, 
and an integer k. Does there exist a collection of at most k sets whose union is 
equal to all of U?


• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4? Yes

• Does there exist a set cover of size at most 3? No

Set cover
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• vertex cover ≤P set cover

Reduction from vertex cover to set cover
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• vertex cover ≤P set cover

• U = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14,}

• S1 = {e1, e2, e3, e4}

• S2 = {e1, e11, e10}

• S3 = {e2, e8}

• S4 = {e3, e9}

• S5 = {e4, e5}

• S6 = {e5, e6, e7}

• S7 = {e7, e13}

• S8 = {e8, e9, e10, e12, e13, e14}

• S9 = {e11, e12}

• S10 = {e6, e14}

Reduction from vertex cover to set cover
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• Reduction.  X ≤P Y if arbitrary instances of problem X can be solved using:

• Polynomial number of standard computational steps, plus

• Polynomial number of calls to oracle that solves problem Y.


• Strategy to make a reduction if we only need one call to the oracle/black box to 
solve X:


1. Show how to turn (any) instance Sx of X into an instance of Sy of Y in 
polynomial time.


2. Show that: Sx a yes instance of X =>  Sy a yes instance of Y.

3. Show that: Sy a yes instance to Y =>  Sx  a yes instance of X.


• Reductions that needs more than one call to black box:

1. Show how to turn (any) instance Sx of X into a polynomial number instance of 

Sy,i of Y in polynomial time.

2. Show: Sx a yes instance of X => one of the instances Sy,i  is a yes instance of Y.

3. Show: one of the instances Sy,i  is a yes instance of Y => Sx  a yes instance of 

X.

Polynomial-time reductions



P and NP
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• P ~ problems solvable in deterministic polynomial time.

• Given a problem type X, there is a deterministic algorithm A which for every 

problem instance I ∈ X solves I in a time that is polynomial in |I|, the size of I. 

• I.e., the running time of A is O(|I|k) for all I ∈ X, where k is constant independent of 

the instance I. 


• Examples. 

• Closest pair: There is an algorithm A such that for every set S of points, A finds a 

closest pair in time O(|S|2). 

• Maximum flow: There is an algorithm A such that for any network, A finds a 

maximum flow in time O(|V|3), where V is the set of vertices. 

The class P
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• Problem [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo 
bag with n potatoes. Can one select some of them such that their weight is exactly 
B grams? 


• Best known solution: create all 2n subsets and check each one.

Hard problems: Example
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• Many problems share the above features 

• Can be solved in time 2|T| (by trying all possibilities.) 

• Given a potential solution, it can be checked in time O(|I|k), whether it is a 

solution or not.  

• These problems are called polynomially checkable.

• A solution can be guessed, and then verified in polynomial time. 

Hard problems
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• Certifier. Algorithm B(s,t) is an efficient certifier for problem X if:

1. B(s,t) runs in polynomial time.

2. For every instance s: 


• Example. Independent set. 

• s: a graph G and an integer k.

• t: a set of vertices from G.

• B(s,t) returns yes if and only if t is an independent set of G and |S| ≥ k.

• This can be checked in polynomial time by checking that no two vertices in t are 

neighbors and that the size is at least k.


• A problem X is in the class NP (Non-deterministic Polynomial time) if X has an 
efficient certifier. 

The class NP

s is a yes instance of X  
⇔ 

there exists a certificate t of length polynomial in s and B(s,t) returns yes.
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• Consider decision problems (yes-no-problems).

• Example.


• [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag 
with n potatoes. Can one select some of them such that their weight is exactly B 
grams?


• Optimization vs decision problem

• [OPTIMIZATION LONGEST PATH] Given a graph G. What is the length of the 

longest simple path?

• [DECISION LONGEST PATH] Given a graph G and integer k. Is a there a simple 

path of length  ≥ k?  


• Exercise. Show that OPTIMIZATION LONGEST PATH can be solved in polynomial 
time if and only if DECISION LONGEST PATH can be solved in polynomial time.

Optimization vs decision problems
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• P solvable in deterministic polynomial time.

• NP solvable in non-deterministic polynomial time/ has an efficient (polynomial time) 

certifier. 

• P⊆NP (every problem T which is in P is also in NP).

• It is not known (but strongly believed) whether the inclusion is proper, that is whether 

there is a problem in NP which is not in P.

• There is subclass of NP which contains the hardest problems, NP-complete 

problems: 

• X is NP-Complete if


• X ∈ NP

• Y ≤P X for all Y ∈ NP

P vs NP
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• Preparing potato soup 

• Packing your suitcase 

• Satisfiability of clauses 

• Partition

• Subset-sum 

• Hamilton Cycle

• Travelling Salesman 

• Bin Packing

• Knapsack 

• Clique

• Independent Set 

• Vertex Cover 

• Set Cover

Examples of NP-complete problems
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• [SOCCER CHAMPIONSHIP 3-POINT RULE] In a football league n teams compete 
for the championship. The leagues uses the 3-point rule, i.e., the points of match are 
distributed as 3:0, 1:1, or 0:3. 

• Input. The table with the points of every team at some point in the season, a list 

of the matches to be played in that season and the name of some team.

• Output. 


• YES if the named team still can become champion

• NO otherwise. 

NP-complete problems
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• [SATISFIABILITY]

• Input: A set of clauses C = {c1, . . . , ck} over n boolean variables x1,…,xn.

• Output: 


• YES if there is a satisfying assignment, i.e., if there is an assignment                   
a: {x1,...,xn} ︎→ {0,1} such that every clause is satisfied,


• NO otherwise. 

NP-complete problems

€ 

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )  ∧ x1  ∨ x3  ∨ x4( )

€ 

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

proposed solution/certificate t
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• [HAMILTONIAN CYCLE]. 

• Input: Undirected graph G

• Output: 


• YES if there exists a simple cycle that visits every node

• NO otherwise

NP-complete problems

 
 

  
 

 

 

  

 

 
 

 

 
 

 
 

 

 
 

 
 

  
 

 

 

  

 

 
 

 

 
 

 
 

 

 
 

instance s certificate t
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• Traveling Salesperson Problem TSP:  Given a set of n cities and a pairwise 
distance function d(u, v), is there a tour of length ≤ D?

All 13,509 cities in US with a population of at least 500  
Reference:  http://www.tsp.gatech.edu
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• Traveling Salesperson Problem TSP:  Given a set of n cities and a pairwise 
distance function d(u, v), is there a tour of length ≤ D?

Optimal TSP tour 
Reference:  http://www.tsp.gatech.edu
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1. Prove Y ∈ NP (that it can be verified in polynomial time).

2. Select a known NP-complete problem X.

3. Give a polynomial time reduction from X to Y (prove X ≤P Y):


• Explain how to turn an instance of X into one or more instances of Y

• Explain how to use a polynomial number of calls to the black box algorithm/

oracle for Y to solve X.

• Prove/argue that the reduction is correct.

How to prove a problem is NP-complete
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• [HAMILTONIAN CYCLE]. Given a undirected graph G=(V,E), does there exists a 
simple cycle that visits every node?


• [TRAVELLING SALESMAN (TSP)] Given a set of n cities and a pairwise distance 
function d(u, v), is there a tour of length ≤ D? 


• Show Hamiltonian Cycle ≤P TSP:

• Idea: For every instance of Hamiltonian Cycle create an instance of TSP such 

that the TSP instance has tour of length ≤ n if and only if G has a Hamiltonian 
cycle.


• Reduction.

• Given instance G=(V,E) of Hamiltonian Cycle, create n cities with distance 

function


• TSP instance has tour of length ≤ n if and only if G has a Hamiltonian cycle.

Reduction example

€ 

d(u, v)  =  
 1 if (u, v) ∈  E
 2 if (u, v) ∉  E
$ 
% 
& 
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• [GLASSES IN A CUPBOARD]. You have n glasses of equal height. If glass gj is put 
into glass gi let dij be the amount of gj above the rim of gi. You want to stack them 
into a single stack, so they fit into a cupboard of height h; is that possible? 


• Glasses in a Cupboard in NP: Proposed solution can be verified in polynomial time.

• NP-completeness:


• Reduction from Directed Hamiltonian Path (DHP).

• Directed Hamiltonian Path: Given a directed graph G, is there a directed simple 

path visiting all vertices.

• DHP is NP-complete

• Reduction: For every instance (graph) of DHP make a set of glasses and a 

cupboard, such that the glasses can be stacked into the cupboard if and only if 
the graph has a Hamiltonian path.

Reduction example
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• Let G = (E, V) a directed graph.

• Make one glass for every node i ∈ V. 

• ︎ If (i, j) ∈ E ensure:


• If (i, j) ∉ E ensure:


• Glass i is red, glass j is yellow.

• Height of the cupboard is |V| − 1 + height of glass 

Reduction example
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Reduction Example
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Reduction Example
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The Main Question:  P Versus NP

• Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

• Is the decision problem as easy as the certification problem?

• Clay $1 million prize.


• Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P ≠ NP If  P = NP

EXP
P = NP
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