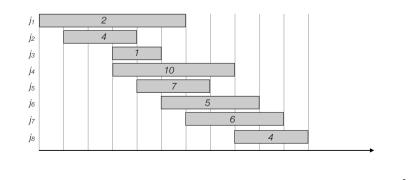
Dynamic Programming

Algorithm Design 6.1, 6.2, 6.3

Thank you to Kevin Wayne for inspiration to slides

Applications

- In class (today and next time)
 - · Weighted interval scheduling
 - · Set of weighted intervals with start and finishing times
 - Goal: find maximum weight subset of non-overlapping intervals



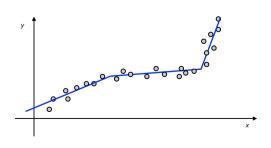
Applications

• In class (today and next time)

- 2

Applications

- In class (today and next time)
 - · Weighted interval scheduling
 - · Segmented least squares
 - Given n points in the plane find a small sequence of lines that minimizes the squared error.



Applications

- In class (today and next time)
 - · Weighted interval scheduling
 - · Segmented least squares
 - Sequence alignment
 - Given two strings A and B how many edits (insertions, deletions, relabelings) is needed to turn A into B?

A C A A G T C
- C A T G T -

A C A A - G T C - C A - T G T -

1 mismatch, 2 gaps

0 mismatches, 4 gaps

5

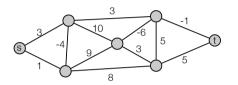
Applications

- In class (today and next time)
 - · Weighted interval scheduling
 - · Segmented least squares
 - Sequence alignment
 - · Shortest paths with negative weights
- Some other famous applications
 - · Unix diff for comparing 2 files
 - Vovke-Kasami-Younger for parsing context-free grammars
 - · Viterbi for hidden Markov models

•

Applications

- In class (today and next time)
 - · Weighted interval scheduling
 - · Segmented least squares
 - · Sequence alignment
 - · Shortest paths with negative weights
 - Given a weighted graph, where edge weights can be negative, find the shortest path between two given vertices.



.

Dynamic Programming

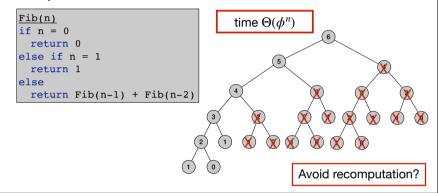
- Greedy. Build solution incrementally, optimizing some local criterion.
- Divide-and-conquer. Break up problem into independent subproblems, solve each subproblem, and combine to get solution to original problem.
- Dynamic programming. Break up problem into overlapping subproblems, and build up solutions to larger and larger subproblems.
 - Can be used when the problem have "optimal substructure":
 - Solution can be constructed from optimal solutions to subproblems
 - + Use dynamic programming when subproblems overlap.

Computing Fibonacci numbers

Fibonacci numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

First try:



Bottom-up Fibonacci numbers

• Fibonacci numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

· Remember already computed values:

time $\Theta(n)$ space $\Theta(n)$

Memoized Fibonacci numbers

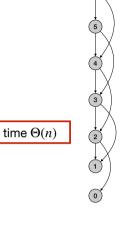
Fibonacci numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

• Remember already computed values:

```
for j=1 to n
  F[j] = null
Mem-Fib(n)

Mem-Fib(n)
if n = 0
  return 0
else if n = 1
  return 1
else
  if F[n] is empty
   F[n] = Mem-Fib(n-1) + Mem-Fib(n-2)
  return F[n]
```



Bottom-up Fibonacci numbers - save space

Fibonacci numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

Remember last two computed values:

```
Iter-Fib(n)
previous = 0
current = 1
for i = 1 to n
  next = previous + current
  previous = current
  current = next
return current
```

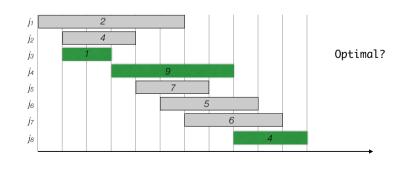
time $\Theta(n)$ space $\Theta(1)$

Weighted Interval Scheduling

13

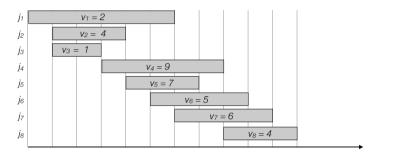
Weighted interval scheduling

- · Weighted interval scheduling problem
 - n jobs (intervals)
 - Job i starts at s_i , finishes at f_i and has weight/value v_i .
 - · Goal: Find maximum weight subset of non-overlapping (compatible) jobs.



Weighted interval scheduling

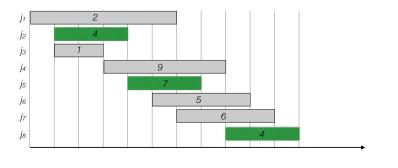
- · Weighted interval scheduling problem
 - · n jobs (intervals)
 - Job i starts at s_i , finishes at f_i and has weight/value v_i .
 - Goal: Find maximum weight subset of non-overlapping (compatible) jobs.



14

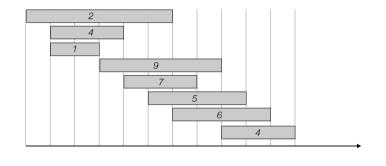
Weighted interval scheduling

- · Weighted interval scheduling problem
 - n jobs (intervals)
 - Job i starts at s_i , finishes at f_i and has weight/value v_i .
 - · Goal: Find maximum weight subset of non-overlapping (compatible) jobs.



Weighted interval scheduling

• Label/sort jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$



17

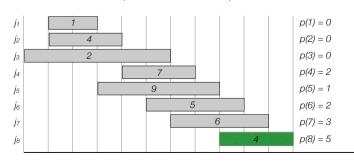
Weighted interval scheduling

- Label/sort jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$
- p(j) = largest index i < j such that job i is compatible with j.
- · Optimal solution OPT:
 - · Case 1. OPT selects last job

 $OPT = v_n + optimal solution to subproblem on 1,...,p(n)$

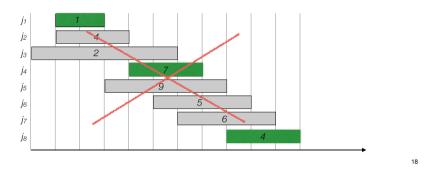
· Case 2. OPT does not select last job

OPT = optimal solution to subproblem on 1,...,n-1



Weighted interval scheduling

- Label/sort jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$
- Greedy?



Weighted interval scheduling

- OPT(j) = value of optimal solution to the problem consisting job requests 1,2,...j.
 - Case 1. OPT(i) selects job j

 $OPT(j) = v_i + optimal solution to subproblem on 1,...,p(j)$

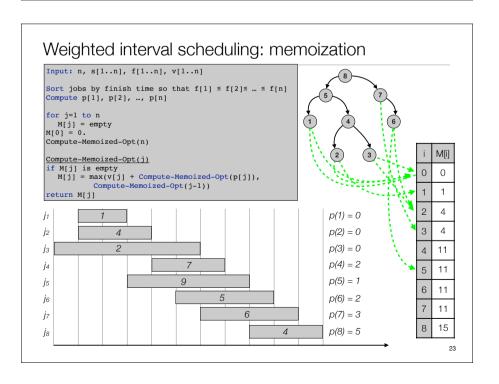
• Case 2. OPT(j) does not select job j

OPT = optimal solution to subproblem 1,...j-1

· Recursion:

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\{v_j + OPT(p(j)), OPT(j-1)\} & \text{otherwise} \end{cases}$$

Weighted interval scheduling: brute force $OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max\{v_j + OPT(p(j)), OPT(j-1)\} \end{cases} \text{ otherwise}$ Input: n, s[1..n], f[1..n], v[1..n] Sort jobs by finish time so that $f[1] \le f[2] \le \dots \le time O(2^n)$ Compute p[1], p[2], ..., p[n] Compute-BruteForce-Opt(n) Compute-Brute-Force-Opt(i) if i = 0return 0 else return $\max(v[j] + Compute-Bru(1)-For(2)-Opt(p(2)))$, Compute+Brute-Force-Opt(j-1)) 5



Weighted interval scheduling: memoization

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n]
Compute p[1], p[2], ..., p[n]
for j=1 to n
 M[j] = null
M[0] = 0.
Compute-Memoized-Opt(n)
Compute-Memoized-Opt(j)
if M[j] is empty
 M[j] = max(v[j] + Compute-Memoized-Opt(p[j]),
        Compute-Memoized-Opt(j-1))
return M[j]
```

- · Running time O(n log n):
- · Sorting takes O(n log n) time.
- · Computing p(n): O(n log n) use log n time to find each p(i)
- · Each subproblem solved once.
- · Time to solve a subproblem constant.
- Space O(n)

Weighted interval scheduling: memoization

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n]
Compute p[1], p[2], ..., p[n]
 M[j] = empty
M[0] = 0.
Compute-Memoized-Opt(n)
Compute-Memoized-Opt(j)
if M[j] is empty
  M[j] = max(v[j] + Compute-Memoized-Opt(p[j]),
          Compute-Memoized-Opt(j-1))
                                                                                   5
                                                                 p(1) = 0
                                                                                      11
                4
                                                                 p(2) = 0
                                                                                      11
                                                                 p(3) = 0
                                                                                      15
                                                                 p(4) = 2
                                                                 p(5) = 1
                                                                 p(6) = 2
                                                                 p(7) = 3
                                                                 p(8) = 5
                                                      4
```

Weighted interval scheduling: bottom-up

```
Compute-Bottom-Up-Opt(n, s[1..n], f[1..n], v[1..n])
Sort jobs by finish time so that f[1] ≤ f[2]≤ ... ≤ f[n]
Compute p[1], p[2], ..., p[n]

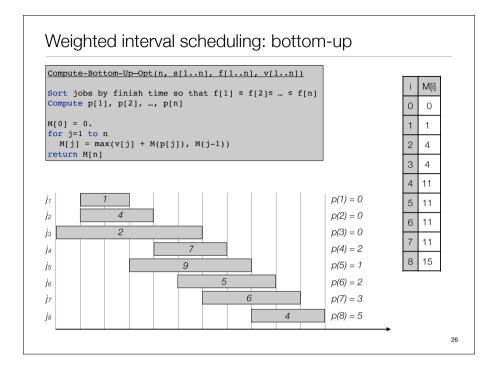
M[0] = 0.
for j=1 to n
    M[j] = max(v[j] + M(p[j]), M(j-1))
return M[n]
```

3 2

- Running time O(n log n):
 - · Sorting takes O(n log n) time.
 - Computing p(n): O(n log n)
 - · For loop: O(n) time
 - · Each iteration takes constant time.
- · Space O(n)

25

Weighted interval scheduling: find solution Find-Solution(j) if j=0 Return emptyset 0 else if M[j] > M[j-1]return {j} U Find-Solution(p[j]) 2 4 3 4 4 11 5 11 6 11 7 11 8 15 return Find-Solution(j-1) Solution = 8, 4, 2p(1) = 0p(2) = 0p(3) = 0p(4) = 2p(5) = 15 p(6) = 2p(7) = 3p(8) = 5

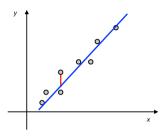


Segmented Least Squares

Least squares

- · Least squares.
 - Given n points in the plane: $(x_1,y_1), (x_2,y_2), ..., (x_n,y_n)$.
 - Find a line y = ax + b that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$



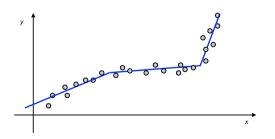
• Solution. Calculus => minimum error is achieved when

$$a = \frac{n\sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n\sum_i x_i^2 - (\sum_i x_i)^2}, \qquad b = \frac{\sum_i y_i - a\sum_i x_i}{n}$$

20

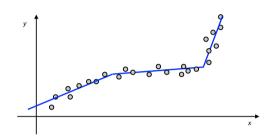
Segmented least squares

- Segmented least squares. Given n points in the plane (x_1,y_1) , (x_2,y_2) , ..., (x_n,y_n) and a constant c > 0 find a sequence of lines that minimizes f(x) = E + cL:
 - E = sum of sums of the squared errors in each segment.
 - L = number of lines



Segmented least squares

- Segmented least squares
 - · Points lie roughly on a sequence of line segments.
 - Given *n* points in the plane (x_1,y_1) , (x_2,y_2) , ..., (x_n,y_n) .
 - Find a sequence of lines that minimizes some function f(x).
- What is a good choice for f(x) that balance accuracy and number of lines?

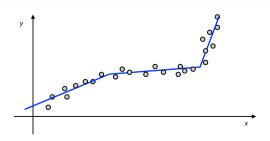


30

Dynamic programming: multiway choice

- OPT(j) = minimum cost for points $p_1, p_2, ..., p_j$.
- e(i,j) = minimum sum of squares for points $p_i, p_{i+1}, ..., p_j$.
- To compute OPT(j):
 - Last segment uses points $p_i, p_{i+1}, ..., p_j$ for some i.
 - Cost = e(i,i) + c + OPT(i-1).

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \min_{1 \leq i \leq j} \{e(i,j) + c + OPT(i-1)\} & \text{otherwise} \end{cases}$$



Segmented least squares algorithm

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \min_{1 \leq i \leq j} \{e(i,j) + c + OPT(i-1)\} & \text{otherwise} \end{cases}$$

```
Segmented-least-squares(n, p<sub>1</sub>, p<sub>2</sub>, ...,p<sub>n</sub>,c)

for j=1 to n
  for i=1 to j
    Compute the least squares e(i,j) for the segment
    p<sub>i</sub>, p<sub>i+1</sub>, ...,p<sub>j</sub>.

M[0] = 0.
  for j=1 to n
    M[j] = ∞
    for i=1 to j
    M[j] = min(M[j],e(i,j) + c + M[i-1])
Return M[n]
```

33

Segmented least squares algorithm

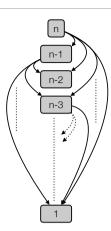
- · Time.
 - $O(n^3)$ for computing e(i,j) for $O(n^2)$ pairs (O(n) per pair).
 - O(n²) for computing M.
 - Total O(n³)
- Space
 - O(n²).

```
Segmented-least-squares(n, p1, p2, ...,pn,c)

for j=1 to n
    for i=1 to j
        Compute the least squares e(i,j) for the segment
        pi, pi+1, ...,pj.

M[0] = 0.
for j=1 to n
    M[j] = ∞
    for i=1 to j
        M[j] = min(M[j],e(i,j) + c + M[i-1])
Return M[n]
```

Subproblem dag



Dynamic programming

- · First formulate the problem recursively.
 - Describe the problem recursively in a clear and precise way.
 - · Give a recursive formula for the problem.
- · Bottom-up
 - · Identify all the subproblems.
 - · Choose a memoization data structure.
 - · Identify dependencies.
 - · Find a good evaluation order.
- · Top-down
 - · Identify all the subproblems.
 - · Choose a memoization data structure.
 - · Identify base cases.