
Dynamic Programming
Algorithm Design 6.1, 6.2, 6.3

Thank you to Kevin Wayne for inspiration to slides

• In class (today and next time)

Applications

2

• In class (today and next time)

• Weighted interval scheduling

• Set of weighted intervals with start and finishing times

• Goal: find maximum weight subset of non-overlapping intervals

Applications

j1
j2
j3
j4
j5
j6
j7

j8

2
4

 1

10
 7

5
6

4

3

• In class (today and next time)

• Weighted interval scheduling

• Segmented least squares

• Given n points in the plane find a small sequence of lines that minimizes the
squared error.

Applications

y

x

4

• In class (today and next time)

• Weighted interval scheduling

• Segmented least squares

• Sequence alignment

• Given two strings A and B how many edits (insertions, deletions, relabelings)
is needed to turn A into B?

Applications

A C A A - G T C
- C A - T G T -

1 mismatch, 2 gaps 0 mismatches, 4 gaps

A C A A G T C
- C A T G T -

5

• In class (today and next time)

• Weighted interval scheduling

• Segmented least squares

• Sequence alignment

• Shortest paths with negative weights

• Given a weighted graph, where edge weights can be negative, find the
shortest path between two given vertices.

Applications

3
-4

-6

3

1

10

9

8

5
3

5

-1

s
t

6

• In class (today and next time)

• Weighted interval scheduling

• Segmented least squares

• Sequence alignment

• Shortest paths with negative weights

• Some other famous applications

• Unix diff for comparing 2 files

• Vovke-Kasami-Younger for parsing context-free grammars

• Viterbi for hidden Markov models

• ….

Applications

7

• Greedy. Build solution incrementally, optimizing some local criterion.

• Divide-and-conquer. Break up problem into independent subproblems,
solve each subproblem, and combine to get solution to original
problem.

• Dynamic programming. Break up problem into overlapping
subproblems, and build up solutions to larger and larger subproblems.

• Can be used when the problem have “optimal substructure”:

Solution can be constructed from optimal solutions to
subproblems
Use dynamic programming when subproblems overlap.

Dynamic Programming

8

• Fibonacci numbers:

• First try:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Computing Fibonacci numbers

Fib(n)
if n = 0
return 0

else if n = 1
return 1

else
return Fib(n-1) + Fib(n-2)

Avoid recomputation?

4

2

1

3

2

1

1 0

0

4

2

1

3

2

1

1 0

0

3

2

1

1

0

5

6

X

X X X

X

X

XX

X X

X

X

X X

XXX

time Θ(ϕn)

• Fibonacci numbers:

• Remember already computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Memoized Fibonacci numbers

for j=1 to n
F[j] = null

Mem-Fib(n)

Mem-Fib(n)
if n = 0
return 0

else if n = 1
return 1

else
if F[n] is empty
F[n] = Mem-Fib(n-1) + Mem-Fib(n-2)

return F[n]

4

3

2

1

0

5

6

time Θ(n)

• Fibonacci numbers:

• Remember already computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Bottom-up Fibonacci numbers

Iter-Fib(n)
F[0] = 0
F[1] = 1
for i = 2 to n
F[n] = F[n-1] + F[n-2]

return F[n]

time

space

Θ(n)
Θ(n)

• Fibonacci numbers:

• Remember last two computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Bottom-up Fibonacci numbers - save space

Iter-Fib(n)
previous = 0
current = 1
for i = 1 to n
next = previous + current
previous = current
current = next

return current

time

space

Θ(n)
Θ(1)

Weighted Interval Scheduling

13

• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling

j1
j2
j3
j4
j5
j6
j7

j8

v1 = 2
v2 = 4

v3 = 1

v4 = 9
v5 = 7

v6 = 5
v7 = 6

v8 = 4

14

• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling

j1
j2
j3
j4
j5
j6
j7

j8

2
4

 1

9
 7

5
6

4

15

Optimal?

• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling

j1
j2
j3
j4
j5
j6
j7

j8

2
4

9
 7

5
6

4

16

 1

• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn

Weighted interval scheduling

2
4

 1

9
 7

5
6

4

17

• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn

• Greedy?

Weighted interval scheduling

2
4

 1

9
 7

5
6

j1
j2
j3
j4
j5
j6
j7

j8 44

18

7

1

• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn

• p(j) = largest index i < j such that job i is compatible with j.

• Optimal solution OPT:

• Case 1. OPT selects last job

• Case 2. OPT does not select last job

Weighted interval scheduling

2
4

 1

9
 7

5
6

j1
j2
j3
j4
j5
j6
j7

j8 4

p(1) = 0
p(2) = 0
p(3) = 0
p(4) = 2
p(5) = 1

p(6) = 2
p(7) = 3

p(8) = 5

OPT = vn + optimal solution to subproblem on 1,…,p(n)

4

19

OPT = optimal solution to subproblem on 1,…,n-1

• OPT(j) = value of optimal solution to the problem consisting job requests 1,2,..,j.

• Case 1. OPT(j) selects job j

• Case 2. OPT(j) does not select job j

• Recursion:

Weighted interval scheduling

OPT(j) = vj + optimal solution to subproblem on 1,…,p(j)

OPT(j) = {
0 if j = 0
max{vj + OPT(p(j)), OPT(j − 1)} otherwise

20

OPT = optimal solution to subproblem 1,…j-1

Weighted interval scheduling: brute force

Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n]
Compute p[1], p[2], …, p[n]
Compute-BruteForce—Opt(n)

Compute-Brute-Force-Opt(j)
if j = 0
return 0

else
return max(v[j] + Compute-Brute-Force-Opt(p[j]),

Compute-Brute-Force-Opt(j-1))

OPT(j) = {
0 if j = 0
max{vj + OPT(p(j)), OPT(j − 1)} otherwise

4

321

0

5

3

2

10 210 10

0 10 00 000

0 0

1

2

3

4

5

time Θ(2n)

21

• Running time O(n log n):

• Sorting takes O(n log n) time.

• Computing p(n): O(n log n) - use log n time to find each p(i).

• Each subproblem solved once.

• Time to solve a subproblem constant.

• Space O(n)

Weighted interval scheduling: memoization
Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n]
Compute p[1], p[2], …, p[n]

for j=1 to n
M[j] = null

M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty
M[j] = max(v[j] + Compute-Memoized-Opt(p[j]),

Compute-Memoized-Opt(j-1))
return M[j]

4

1

2

3

0

5

22

Weighted interval scheduling: memoization
Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n]
Compute p[1], p[2], …, p[n]

for j=1 to n
M[j] = empty

M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty

M[j] = max(v[j] + Compute-Memoized-Opt(p[j]),
Compute-Memoized-Opt(j-1))

return M[j]

2
4

 1

9
 7

5
6

j1
j2
j3
j4
j5
j6
j7

j8 4

p(1) = 0
p(2) = 0
p(3) = 0
p(4) = 2
p(5) = 1

p(6) = 2
p(7) = 3

p(8) = 5

i M[i]

0 0

1

2

3

4

5

6

7

8

23

7

3

1 4

5

8

2

1

4

4

11

11

11

11

15

6

Weighted interval scheduling: memoization
Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n]
Compute p[1], p[2], …, p[n]

for j=1 to n
M[j] = empty

M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty

M[j] = max(v[j] + Compute-Memoized-Opt(p[j]),
Compute-Memoized-Opt(j-1))

return M[j]

2
4

 1

9
 7

5
6

j1
j2
j3
j4
j5
j6
j7

j8 4

p(1) = 0
p(2) = 0
p(3) = 0
p(4) = 2
p(5) = 1

p(6) = 2
p(7) = 3

p(8) = 5

i M[i]

0 0

1

2

3

4

5

6

7

8

24

1

4

4

11

11

11

11

15

• Running time O(n log n):

• Sorting takes O(n log n) time.

• Computing p(n): O(n log n)

• For loop: O(n) time

• Each iteration takes constant time.

• Space O(n)

Weighted interval scheduling: bottom-up

Compute-Bottom-Up—Opt(n, s[1..n], f[1..n], v[1..n])

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n]
Compute p[1], p[2], …, p[n]

M[0] = 0.
for j=1 to n
M[j] = max(v[j] + M(p[j]), M(j-1))

return M[n]

4

1

2

3

0

5

25

Weighted interval scheduling: bottom-up
Compute-Bottom-Up—Opt(n, s[1..n], f[1..n], v[1..n])

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n]
Compute p[1], p[2], …, p[n]

M[0] = 0.
for j=1 to n

M[j] = max(v[j] + M(p[j]), M(j-1))
return M[n]

2

4
 1

9
 7

5
6

j1
j2
j3
j4
j5
j6
j7

j8 4

p(1) = 0
p(2) = 0
p(3) = 0
p(4) = 2
p(5) = 1

p(6) = 2
p(7) = 3

p(8) = 5

i M[i]

0 0

1

2

3

4

5

6

7

8

26

1

4

4

11

11

11

11

15

Weighted interval scheduling: find solution

2
4

 1

9
 7

5
6

j1
j2
j3
j4
j5
j6
j7

j8 4

p(1) = 0
p(2) = 0
p(3) = 0
p(4) = 2
p(5) = 1

p(6) = 2
p(7) = 3

p(8) = 5

27

Find-Solution(j)
if j=0

Return emptyset
else if M[j] > M[j-1]

return {j} ∪ Find-Solution(p[j])
else

return Find-Solution(j-1)

i M[i]

0 0

1 4

2 4

3 4

4 11

5 11

6 11

7 11

8 15

Solution = 8 , 4 , 2

4

7

4

Segmented Least Squares

28

• Least squares.

• Given n points in the plane: (x1,y1), (x2,y2), …, (xn,yn).

• Find a line y = ax + b that minimizes the sum of the squared error:

• Solution. Calculus => minimum error is achieved when

Least squares

a =
n∑i xiyi − (∑i xi)(∑i yi)

n∑i x2
i − (∑i xi)2

, b =
∑i yi − a∑i xi

n

SSE =
n

∑
i=1

(yi − axi − b)2
y

x

29

• Segmented least squares

• Points lie roughly on a sequence of line segments.

• Given n points in the plane (x1,y1), (x2,y2), …, (xn,yn).

• Find a sequence of lines that minimizes some function f(x).

• What is a good choice for f(x) that balance accuracy and number of lines?

Segmented least squares

y

x

30

• Segmented least squares. Given n points in the plane (x1,y1), (x2,y2), …, (xn,yn) and a
constant c > 0 find a sequence of lines that minimizes f(x) = E + cL:

• E = sum of sums of the squared errors in each segment.

• L = number of lines

Segmented least squares

y

x

31

• OPT(j) = minimum cost for points p1, p2,…, pj.

• e(i,j) = minimum sum of squares for points pi, pi+1,…, pj.

• To compute OPT(j):

• Last segment uses points pi, pi+1,…, pj for some i.

• Cost = e(i,j) + c + OPT(i-1).

Dynamic programming: multiway choice

y

x

OPT(j) = {
0 if j = 0
min1≤i≤ j{e(i, j) + c + OPT(i − 1)} otherwise

32

Segmented least squares algorithm

OPT(j) = {
0 if j = 0
min1≤i≤ j{e(i, j) + c + OPT(i − 1)} otherwise

Segmented-least-squares(n, p1, p2, …,pn,c)

for j=1 to n
for i=1 to j
Compute the least squares e(i,j) for the segment
pi, pi+1, …,pj.

M[0] = 0.
for j=1 to n
M[j] = ∞
for i=1 to j
M[j] = min(M[j],e(i,j) + c + M[i-1])

Return M[n]

33

Subproblem dag

n

n-1

n-2

n-3

1

• Time.

• O(n3) for computing e(i,j) for O(n2) pairs (O(n) per pair).

• O(n2) for computing M.

• Total O(n3)

• Space

• O(n2).

Segmented least squares algorithm

Segmented-least-squares(n, p1, p2, …,pn,c)

for j=1 to n
for i=1 to j

Compute the least squares e(i,j) for the segment
pi, pi+1, …,pj.

M[0] = 0.
for j=1 to n

M[j] = ∞
for i=1 to j

M[j] = min(M[j],e(i,j) + c + M[i-1])

Return M[n] 35

• First formulate the problem recursively.
• Describe the problem recursively in a clear and precise way.

• Give a recursive formula for the problem.

• Bottom-up
• Identify all the subproblems.

• Choose a memoization data structure.

• Identify dependencies.

• Find a good evaluation order.

• Top-down
• Identify all the subproblems.

• Choose a memoization data structure.

• Identify base cases.

Dynamic programming

