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Algorithm Design 6.1, 6.2, 6.3

Thank you to Kevin Wayne for inspiration to slides

• In class (today and next time)

Applications
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• In class (today and next time)

• Weighted interval scheduling


• Set of weighted intervals with start and finishing times

• Goal: find maximum weight subset of non-overlapping intervals

Applications
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• In class (today and next time)

• Weighted interval scheduling

• Segmented least squares


• Given n points in the plane find a small sequence of lines that minimizes the 
squared error.

Applications
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• In class (today and next time)

• Weighted interval scheduling

• Segmented least squares

• Sequence alignment


• Given two strings A and B how many edits (insertions, deletions, relabelings) 
is needed to turn A into B?

Applications

A C A A - G T C   
- C A - T G T -  

1 mismatch, 2 gaps 0 mismatches, 4 gaps

A C A A G T C   
- C A T G T -  
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• In class (today and next time)

• Weighted interval scheduling

• Segmented least squares

• Sequence alignment

• Shortest paths with negative weights


• Given a weighted graph, where edge weights can be negative, find the 
shortest path between two given vertices. 

Applications
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• In class (today and next time)

• Weighted interval scheduling

• Segmented least squares

• Sequence alignment

• Shortest paths with negative weights


• Some other famous applications

• Unix diff for comparing 2 files

• Vovke-Kasami-Younger for parsing context-free grammars

• Viterbi for hidden Markov models

• ….

Applications
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• Greedy. Build solution incrementally, optimizing some local criterion.


• Divide-and-conquer. Break up problem into independent subproblems, 
solve each subproblem, and combine to get solution to original 
problem. 


• Dynamic programming. Break up problem into overlapping 
subproblems, and build up solutions to larger and larger subproblems. 

• Can be used when the problem have “optimal substructure”:


Solution can be constructed from optimal solutions to 
subproblems 
Use dynamic programming when subproblems overlap.

Dynamic Programming

8



• Fibonacci numbers:





• First try:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Computing Fibonacci numbers

Fib(n)
if n = 0 
return 0

else if n = 1 
return 1

else 
return Fib(n-1) + Fib(n-2)

Avoid recomputation?
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time Θ(ϕn)

• Fibonacci numbers:





• Remember already computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Memoized Fibonacci numbers

for j=1 to n
F[j] = null

Mem-Fib(n)

Mem-Fib(n)
if n = 0 
return 0

else if n = 1 
return 1

else 
if F[n] is empty 
F[n] = Mem-Fib(n-1) + Mem-Fib(n-2)

return F[n] 
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time Θ(n)

• Fibonacci numbers:





• Remember already computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Bottom-up Fibonacci numbers

Iter-Fib(n)
F[0] = 0
F[1] = 1 
for i = 2 to n 
F[n] = F[n-1] + F[n-2]

return F[n] 

time 


space 

Θ(n)
Θ(n)

• Fibonacci numbers:





• Remember last two computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Bottom-up Fibonacci numbers - save space

Iter-Fib(n)
previous = 0
current = 1 
for i = 1 to n 
next = previous + current
previous = current
current = next

return current

time 


space 

Θ(n)
Θ(1)



Weighted Interval Scheduling
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• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling
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• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling
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Optimal?

• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling
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• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn  

Weighted interval scheduling
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• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn  

• Greedy?

Weighted interval scheduling
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• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn  

• p(j) = largest index i < j such that job i is compatible with j.

• Optimal solution OPT:


• Case 1. OPT selects last job


• Case 2. OPT does not select last job

Weighted interval scheduling
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OPT = vn + optimal solution to subproblem on 1,…,p(n)
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OPT = optimal solution to subproblem on 1,…,n-1

• OPT(j) = value of optimal solution to the problem consisting job requests 1,2,..,j.


• Case 1. OPT(j) selects job j


• Case 2. OPT(j) does not select job j


• Recursion:

Weighted interval scheduling

OPT(j) = vj + optimal solution to subproblem on 1,…,p(j)

OPT( j) = {
0 if j = 0
max{vj + OPT(p( j)), OPT( j − 1)} otherwise

20

OPT = optimal solution to subproblem 1,…j-1



Weighted interval scheduling: brute force

Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]
Compute-BruteForce—Opt(n)

Compute-Brute-Force-Opt(j)
if j = 0
return 0

else
return max(v[j] + Compute-Brute-Force-Opt(p[j]), 

Compute-Brute-Force-Opt(j-1))

OPT( j) = {
0 if j = 0
max{vj + OPT(p( j)), OPT( j − 1)} otherwise
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• Running time O(n log n):

• Sorting takes O(n log n) time.

• Computing p(n): O(n log n) - use log n time to find each p(i).

• Each subproblem solved once.

• Time to solve a subproblem constant.


• Space O(n)

Weighted interval scheduling: memoization
Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]

for j=1 to n
M[j] = null

M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty
M[j] = max(v[j] + Compute-Memoized-Opt(p[j]), 

Compute-Memoized-Opt(j-1))
return M[j]
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Weighted interval scheduling: memoization
Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]

for j=1 to n
M[j] = empty

M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty

M[j] = max(v[j] + Compute-Memoized-Opt(p[j]), 
Compute-Memoized-Opt(j-1))

return M[j]
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Weighted interval scheduling: memoization
Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]

for j=1 to n
M[j] = empty

M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty

M[j] = max(v[j] + Compute-Memoized-Opt(p[j]), 
Compute-Memoized-Opt(j-1))

return M[j]
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• Running time O(n log n):

• Sorting takes O(n log n) time.

• Computing p(n): O(n log n) 

• For loop: O(n) time


• Each iteration takes constant time.

• Space O(n)

Weighted interval scheduling: bottom-up

Compute-Bottom-Up—Opt(n, s[1..n], f[1..n], v[1..n])

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]

M[0] = 0.
for j=1 to n
M[j] = max(v[j] + M(p[j]), M(j-1))

return M[n]

4

1

2

3

0

5

25

Weighted interval scheduling: bottom-up
Compute-Bottom-Up—Opt(n, s[1..n], f[1..n], v[1..n])

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]

M[0] = 0.
for j=1 to n

M[j] = max(v[j] + M(p[j]), M(j-1))
return M[n]
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Weighted interval scheduling: find solution
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Find-Solution(j)
if j=0

Return emptyset
else if M[j] > M[j-1]

return {j} ∪ Find-Solution(p[j])
else

return Find-Solution(j-1)

i M[i]
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Segmented Least Squares
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• Least squares. 

• Given n points in the plane: (x1,y1), (x2,y2), …, (xn,yn).

• Find a line y = ax + b that minimizes the sum of the squared error:


• Solution. Calculus => minimum error is achieved when 

Least squares

a =
n∑i xiyi − (∑i xi)(∑i yi)

n∑i x2
i − (∑i xi)2

, b =
∑i yi − a∑i xi

n

SSE =
n

∑
i=1

(yi − axi − b)2
y

x
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• Segmented least squares

• Points lie roughly on a sequence of line segments.

• Given n points in the plane (x1,y1), (x2,y2), …, (xn,yn).

• Find a sequence of lines that minimizes some function f(x).


• What is a good choice for f(x) that balance accuracy and number of lines?

Segmented least squares
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• Segmented least squares. Given n points in the plane (x1,y1), (x2,y2), …, (xn,yn) and a 
constant c > 0 find a sequence of lines that minimizes f(x) = E + cL:


• E = sum of sums of the squared errors in each segment.


• L = number of lines

Segmented least squares

y

x

31

• OPT(j) = minimum cost for points p1, p2,…, pj.

• e(i,j) = minimum sum of squares for points pi, pi+1,…, pj.

• To compute OPT(j):


• Last segment uses points pi, pi+1,…, pj for some i.

• Cost = e(i,j) + c + OPT(i-1).

Dynamic programming: multiway choice

y

x

OPT( j) = {
0 if j = 0
min1≤i≤ j{e(i, j) + c + OPT(i − 1)} otherwise
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Segmented least squares algorithm

OPT( j) = {
0 if j = 0
min1≤i≤ j{e(i, j) + c + OPT(i − 1)} otherwise

Segmented-least-squares(n, p1, p2, …,pn,c)

for j=1 to n
for i=1 to j
Compute the least squares e(i,j) for the segment 
pi, pi+1, …,pj. 

M[0] = 0.
for j=1 to n
M[j] = ∞
for i=1 to j
M[j] = min(M[j],e(i,j) + c + M[i-1]) 

Return M[n]
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Subproblem dag

n

n-1

n-2
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1

• Time.

• O(n3) for computing e(i,j) for O(n2) pairs (O(n) per pair).

• O(n2) for computing M.


• Total O(n3)


• Space


• O(n2).

Segmented least squares algorithm

Segmented-least-squares(n, p1, p2, …,pn,c)

for j=1 to n
for i=1 to j

Compute the least squares e(i,j) for the segment 
pi, pi+1, …,pj. 

M[0] = 0.
for j=1 to n

M[j] = ∞
for i=1 to j

M[j] = min(M[j],e(i,j) + c + M[i-1]) 

Return M[n] 35

• First formulate the problem recursively. 
• Describe the problem recursively in a clear and precise way.

• Give a recursive formula for the problem.


• Bottom-up 
• Identify all the subproblems.

• Choose a memoization data structure.

• Identify dependencies. 

• Find a good evaluation order. 


• Top-down 
• Identify all the subproblems.

• Choose a memoization data structure.

• Identify base cases. 

Dynamic programming


