
Network Flows

Inge Li Gørtz

• Matchings

• Job scheduling

• Image segmentation

• Baseball elimination

• Disjoint paths

• Survivable network design

Applications

Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 1

2

2

2
2

1

2
2

1s t

Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road.

• Example 1:

• Solution 1: 4 trucks

1

2

2

2
2

1

2
2

1s t2
2 2

2
2 2

Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road.

• Example 1:

• Solution 1: 4 trucks

• Solution 2: 5 trucks

1

2

2

2
2

1

2
2

1s t2 2

2 2

1
1

1

1

1

Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road.

• Example 1:

• Solution 1: 4 trucks

• Solution 2: 5 trucks

• Example 2:

1

2

2

2
2

1

2
2

1s t2 2

2 2

1
1

1

1

1

2

2

2

2
2

2

2
2

1s t

Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road.

• Example 1:

• Solution 1: 4 trucks

• Solution 2: 5 trucks

• Example 2:

• 5 trucks (need to cross river).

1

2

2

2
2

1

2
2

1s t2 2

2 2

1
1

1

1

1

2

2

2

2
2

2

2
2

1s t

• Network flow:

• graph G=(V,E).

• Special vertices s (source) and t (sink).

• s has no edges in and t has no edges out.

• Every edge (e) has a (integer) capacity c(e) ≥ 0.

• Flow:

• capacity constraint: every edge e has a flow 0 ≤ f(e) ≤ c(e).

• flow conservation: for all u ≠ s, t: flow into u equals flow out of u.

• Value of flow f is the sum of flows out of s:

• Maximum flow problem: find s-t flow of maximum value

Network Flow

1

2

2

2
2

1

2
2

1s t

X

v:(v,u)2E

f(v, u) =
X

v:(u,v)2E

f(u, v) u

2

1

5

2
0

3
3

v(f) = ∑
v:(s,v)∈E

f(e) = f out(s)

Algorithm

• Find path where we can send more flow.

1

2

2

2
2

1

2
2

1s t

Algorithm

• Find path where we can send more flow.

1

2

2

2
2

1

2
2

1s t

2
2 2

Algorithm

• Find path where we can send more flow.

1

2

2

2
2

1

2
2

1s t2
2 2

2
2 2

Algorithm

• Find path where we can send more flow.

• Send flow back (cancel flow).
1

2

2

2
2

1

2
2

1s t2
2 2

2
2 2

Algorithm

• Find path where we can send more flow.

• Send flow back (cancel flow).
1

2

2

2
2

1

2
2

1s t2
2 2

2
2 2

Algorithm

• Find path where we can send more flow.

• Send flow back (cancel flow).
1

2

2

2
2

1

2
2

1s t2
2 2

2
2 2

1

2

2

2
2

1

2
2

1s t2
1 2

2
1 2

1

1

1

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t

2/ 2/ 2/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t

2/ 2/ 2/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t

2/ 2/ 2/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t

2/ 2/

1/
1/

1/
1/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t

2/ 2/

1/
1/

1/
1/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t

2/ 2/

1/
1/

1/
1/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t1/ 2/

2/ 2/

1/
1/

1/

1/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t1/ 2/

2/ 2/

1/
1/

1/

1/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t1/ 2/

2/ 2/

1/
1/

1/

1/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t
2/

2/ 2/

1/
1/

1/

1/

1/

2/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
2

1s t
2/

2/ 2/

1/
1/

1/

1/

1/

2/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path (definition different than in CLRS): s-t path where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

• Ford-Fulkerson:

• Find augmenting path, use it

• Find augmenting path, use it

• Find augmenting path, use it

• ………………….

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0
+δ +δ +δ-δ -δ -δ

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 5

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/ 5/

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/ 5/

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/ 5/

3/ 3/

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/ 5/

3/ 3/

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/ 5/

3/ 3/

4/ 4/

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/ 5/

3/ 3/

4/ 4/

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/ 5/

3/ 3/

4/ 4/

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/

3/

4/

5/
2/

2/

3/

6/

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4
2

9

s t

+δ +δ +δ-δ -δ -δ

2
2

2

6 55/ 5/

3/

4/

5/
2/

2/

3/

6/

Analysis of Ford-Fulkerson

• Integral capacities implies theres is a maximum flow where all flow values f(e)
are integers.

• Number of iterations:

• Always increment flow by at least 1: #iterations ≤ max flow value f*

• Time for one iteration:

• Can find augmenting path in linear time: One iteration takes O(m) time.

• Total running time = O(|f*| m).

Residual networks

1

2

2

2
2

2
2

1s t

1

1

2

2

2
2

1

2 2

1s t0
0

0

0

0
0

0 0

0

Residual networks

1

2

2

2
2

2
2

1s t

1

1

2

2

2
2

1

2 2

1s t0
0

0

0

0
0

0 0

0

2/ 2/
2/

Residual networks

1

2

2

2
2

2
2

1s t

1

1

0

2

0
0

1

2 2

1s t2
0

0

2
0

2

0 0

0

2/ 2/
2/

Residual networks

1

2

2

2
2

2
2

1s t

1

1

0

2

0
0

1

2 2

1s t2
0

0

2

0
2

0 0

0

2/ 2/
2/

1/

Residual networks

1

2

2

2
2

2
2

1s t

1

1

0

2

0
0

1

2 2

1s t2
0

0

2

0
2

0 0

0

2/ 2/

1/

1/
1/

Residual networks

1

2

2

2
2

2
2

1s t

1

0

0

2

1
0

1

2 1

0s t2
1

1

1

1
2

0 0

0

2/ 2/
2/

1/
1/

1/
1/

1/

1/

1/
1/

Residual networks

1

2

2

2
2

2
2

1s t

1

0

0

2

1
0

1

2 1

0s t2
1

1

1

1
2

0 0

0

2/ 2/

Implementation

adj[0…n-1] # adjacency list
cap # capacity dictionary

for each edge (u,v,c):
adj[u].append(v) # add v to u’s adjacency list (adding the edge u -> v)
adj[v].append(u) # add u to v’s adjacency list (adding the edge v -> u)
cap[(u,v)] = c # set capacity on u->v edge to c.
cap[(v,u)] = 0 # set capacity on u->v edge to 0.

Graph search algorithm that searches for an augmenting path from u->v (e.g. BFS or DFS)
AugPath():

visited[0…n-1] # visited list initialized to False
pred[0…n-1] # predecessor list
stack S # initialize stack S

push(S,s) and set visited[s] = True
while S not empty and not visited[t]:

u = pop(S)
for v in adj[u]:

if visited[v] or cap[(u,v)] = 0:
continue

visited[v] = True
pred[v] = u
push(S,v)

if visited[t]: # found augmenting path
follow pred pointers back from t to s to find delta (fill out details yourself)
follow pred pointers back from t to s to update capacities (fill out details yourself)
return delta

return 0 # no augmenting path found

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Capacity of cut: total capacity of edges going from S to T.

s t

S T

2

2

2

2
2

2

2
2

1s t

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Capacity of cut: total capacity of edges going from S to T.

s t

S T

2

2

2

2
2

2

2
2

1s t

c(S,T) = 5

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Capacity of cut: total capacity of edges going from S to T.

s t

S T

2

2

2

2
2

2

2
2

1s t

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Capacity of cut: total capacity of edges going from S to T.

s t

S T

2

2

2

2
2

2

2
2

1s t c(S,T) = 8

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
2

1s t

2/

1/
1/ 2/

2/
1/

2/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
2

1s t

2/

1/
1/ 2/

2/
1/

2/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
2

1s t

c(S,T) = 9
2/

1/
1/ 2/

2/
1/

2/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
2

1s t

f(S,T) = 5c(S,T) = 9
2/

1/
1/ 2/

2/
1/

2/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
2

1s t

2/

1/
1/ 2/

2/
1/

2/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
2

1s t

c(S,T) = 8
2/

1/
1/ 2/

2/
1/

2/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
2

1s t
f(S,T) = 6 - 1 = 5

c(S,T) = 8
2/

1/
1/ 2/

2/
1/

2/

1/

1/
2/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
2

1s t

f(S,T) = 5c(S,T) = 5
2/

1/
1/ 2/

2/
1/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut = flow from S to T minus flow from T to S.

s t

S T

f1

f3

f4

f6

f5s f2

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut = flow from S to T minus flow from T to S.

• Flow across cut: f4 + f5 - f6 = ?

s t

S T

f1

f3

f4

f6

f5s f2

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut = flow from S to T minus flow from T to S.

• Flow across cut: f4 + f5 - f6 = ?

• f4 + f5 - f1 - f2 = 0

• f2 - f6 - f3 = 0

• f1 + f3 = |f|

• (f4 + f5 - f1 - f2) + (f2 - f6 - f3) + (f1 + f3) = |f|

s t

S T

f1

f3

f4

f6

f5s f2

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut = flow from S to T minus flow from T to S.

• Flow across cut: f4 + f5 - f6 = ?

• f4 + f5 - f1 - f2 = 0

• f2 - f6 - f3 = 0

• f1 + f3 = |f|

• (f4 + f5 - f1 - f2) + (f2 - f6 - f3) + (f1 + f3) = |f|

s t

S T

f1

f3

f4

f6

f5s f2

x xx x x x

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut = flow from S to T minus flow from T to S.

• Flow across cut: f4 + f5 - f6 = ?

• f4 + f5 - f1 - f2 = 0

• f2 - f6 - f3 = 0

• f1 + f3 = |f|

• (f4 + f5 - f1 - f2) + (f2 - f6 - f3) + (f1 + f3) = |f|

• f4 + f5 - f6 = |f|

s t

S T

f1

f3

f4

f6

f5s f2

x xx x x x

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut = flow from S to T minus flow from T to S.

• Flow across cut: f4 + f5 - f6 = ?

• f4 + f5 - f1 - f2 = 0

• f2 - f6 - f3 = 0

• f1 + f3 = |f|

• (f4 + f5 - f1 - f2) + (f2 - f6 - f3) + (f1 + f3) = |f|

• f4 + f5 - f6 = |f|

• Flow across cut is |f| for all cuts => flow out of s = flow into t.

s t

S T

f1

f3

f4

f6

f5s f2

x xx x x x

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut is |f| for all cuts => flow out of s = flow into t.

• |f| ≤ c(S,T):

• |f| = f4 + f5 - f6 ≤ f4 + f5 ≤ c4 + c5 = c(S,T)

s t

S T

f1

f3

f4

f6

f5s f2

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
maximum flow and (S,T) is a minimum cut.

s t

S T

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
maximum flow and (S,T) is a minimum cut.

• Let f* be the maximum flow and the (S*,T*) minimum cut:

• |f| ≤ |f*| ≤ c(S*,T*) ≤ c(S,T).

• Since |f| = c(S,T) this implies |f| = |f*| and c(S,T) = c(S*,T*).

s t

S T

Finding minimum cuts

8 3

8

4
2

9

s t

2
2

2

6 55/ 3/ 5/

5/ 3/

4/ 6/

2/

2/

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

• When no augmenting s-t path:

• Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts

8 3

8

4
2

9

s t

2
2

2

6 55/ 3/ 5/

5/ 3/

4/ 6/

2/

2/

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

• When no augmenting s-t path:

• Let S be all vertices to which there exists an augmenting path from s.

• value of flow (S,T) = capacity of the cut:

• All forward edges in the minimum cut are “full” (flow = capacity).

Finding minimum cuts

8 3

8

4
2

9

s t

2
2

2

6 55/ 3/ 5/

5/ 3/

4/ 6/

2/

2/

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

• When no augmenting s-t path:

• Let S be all vertices to which there exists an augmenting path from s.

• value of flow (S,T) = capacity of the cut:

• All forward edges in the minimum cut are “full” (flow = capacity).

• All backwards edges in minimum cut have 0 flow.

Finding minimum cuts (with residual network).

3 3

5

4
2 3

s t

2
2

2

1
5

5 3

5

6

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

• When no augmenting s-t path:

• Let S be all vertices to which there exists an augmenting path from s.

• value of flow (S,T) = capacity of the cut:

• All forward edges in the minimum cut are “full” (flow = capacity).

• All backwards edges in minimum cut have 0 flow.

8 3

8

4
2

9

s t

2
2

2

6 55/ 3/ 5/

5/ 3/

4/ 6/

2/

2/

Use of Max-flow min-cut theorem

• There is no augmenting path <=> f is a maximum flow.
• f maximum flow => no augmenting path:

• Show that exists augmenting path => f not maximum flow.
• no augmenting path => f maximum flow

• no augmenting path => exists cut (S,T) where |f| = c(S,T):
• Let S be all vertices to which there exists an augmenting path from s.
• t not in S (since there is no augmenting s-t path).
• Edges from S to T: f1 = c1 and f2 = c2.
• Edges from T to S: f3 = 0.
• => |f| = f1 + f2 - f3 = f1 + f2 = c1 + c2 = c(S,T).
• => f a maximum flow and (S,T) a minimum cut.

f1

f3

f2s t

Removing assumptions

• Edges into s and out of t:

• Capacities not integers.

v(f) = f out(s) − f in(s)

Network Flow

• Multiple sources and sinks:

