Randomized algorithms |I

Randomized algorithms

Inge Li Gortz

- Last week

- Contention resolution
-+ Global minimum cut

- Today '@ .

- Expectation of random variables
- Guessing cards
- Hash functions and hash tables

<> ¥
e
PR
<%

re<
O
ss'ee

Random Variables and Expectation

Random variables

- Arandom variable is an entity that can assume different values.
+ The values are selected “randomly”; i.e., the process is governed by a probability distribution.

- Examples: Let X be the random variable “number shown by dice”.

- X can take the values 1, 2, 3, 4, 5, 6.

- If it is a fair dice then the probability that X = 1 is 1/6:
- PrX=1]=1/6.
- Pr[X=2] = 1/6.

Expected values

Waiting for a first succes

- Let X be a random variable with values in {xi,...xn}, Wwhere x; are numbers.
- The expected value (expectation) of X is defined as

EX] = ixj -Pr[X = xj]
j=1

+ The expectation is the theoretical average.
- Example:

+ X =random variable “number shown by dice”

6
1
E[X]:Zj.Pr[xzj]=(1+2+3+4+5+6)-g=3.5
=1

Coin flips. Coin is heads with probability p and tails with probability I — p. How many independent
flips X until first heads?

Probability of X = j? (first succes is in round j)
PriX=jl=(-py"-p

Expected value of X:

BIX) = Y PX =) = 3 (=pyop =Ny
j=1 j=1 j=1

Properties of expectation

- If we repeatedly perform independent trials of an experiment, each of which succeeds with
probability p > 0, then the expected number of trials we need to perform until the first succes is

1/p.

- If X'is a 0/1 random variable, then E[X]| = Pr[X = 1].

- Linearity of expectation: For two random variables X and Y we have

E[X+Y]=E[X]+E[Y]

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. Can't remember what's been turned over already. Guess a card from full
deck uniformly at random. B
Claim. The expected number of correct guesses is 1. “‘;

X, = 1if i guess correct and zero otherwise.

X = the correct number of guesses = X; + ... + X,

E[X] = Pr[X,= 1] = 1/n.

E[X] = E[X, + - +X,] = EX,] + - + EIX,] = l/n+ -+ 1/n=1.

Guessing cards

Coupon collector

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.
Claim. The expected number of correct guesses is ©(log n).
X, = 1if i" guess correct and zero otherwise.
X = the correct number of guesses = X, + ... + X,
EX]=PrX;=1]1=1/(n—-i+1).
EX]=E[X|]+ - +EX]=1/n+--+1/24+1/1=H,.

Inn< Hn) <Ilnn+1

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons.
Assuming all boxes are equally likely to contain each coupon, how many boxes before you have at
least 1 coupon of each type?

Claim. The expected number of steps is @(n log n).
Phase j = time between j and j + 1 distinct coupons.

Xj = number of steps you spend in phase j.

X = number of steps in total = X + X; + --- + X, _;.
E[X] = n/(n - j).
The expected number of steps:

n—1

E[X]:E[lf)(j]erE[Xj]z an(n—j)=n~il/i=n~Hn.

j=0 j=0 j=0 i=1

Hashing

Dictionaries

- Dictionary problem. Maintain a dynamic set of S ¢ U subject to the following operations:
- Lookup(x): return true if x € S and false otherwise
- Insert(x): Set S =S U {x}
- Delete(x): Set S =S\ {x}

- Universe size. Typically |U| = 2264 and |S| << |U].

- Satellite information. Information associated with each element.
- Goal. A compact data structure with fast operations.

- Applications. Many! A key component in other data structures and algorithms.

Chained Hashing

+ Chained hashing [Dumey 1956].
- n=|S|.

+ Hash function. Pick some crazy, chaotic, random function h that maps U to {0, ..., m-1}, where
m = O(n).

- Initialise an array A[O, ..., m-1].

- Ali] stores a linked list containing the keys in S whose hash value is i.

Uniform random hash functions

+ E.g. h(x) = x mod 11. Not crazy, chaotic, random.

- Suppose |U| = n2: For any hash function h there will be a set S of n elements that all map to the
same position!
=> we end up with a single linked list.

- Solution: randomization.
- For every element u € U: select h(u) uniformly at random in {0, ..., m-1} independently from
all other choices.

- Claim. The probability that h(u) = h(v) for two elements u = v is 1/m.

+ Proof.
- m2 possible choices for the pair of values (h(u),h(v)). All equally likely.
- Exactly m of these gives a collision.

Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?

- Random variable L, = length of linked list for x. L= {yeS|hQy) =hx)}

+ Indikator random variable:

= {1 it h(x) = h(y) szzly

1
) E[L] = Pr[h(y) = h(x)] = — for x # y.
0 otherwise 1es 7 m

+ The expected length of the linked list for x:

E[L] = E[Zly} = Y ElI] =1+ Z % = 1+(n—1)%=®(1).

yes yes yes\{x}

Chained Hashing with Random Hash Function

- Constant time and O(n) space for the hash table.

+ But:
- Need O(|U|) space for the hash function.
- Need a lot of random bits to generate the hash function.
- Need a lot of time to generate the hash function.

- Do we need a truly random hash function?

- When did we use the fact that h was random in our analysis?

Chained Hashing with Random Hash Function

Universal hash functions

- Expected length of the linked list for h(x)?
- Random variable L, = length of linked list for x. L= {yeS|hQy) =hx)}

+ Indikator random variable:

_ {1 ith() = h(y) L= _)] = -
b= {0 otherwise * Z Y ElL,) =Prih(y) = hx)] = m for x#.

yeS

+ The expected length of the linked list for x:

ElL]= E[Zg} = YEL) =1+) % = 1+(n—1)-%=®(1y

yeS yes yeS\{x}

+ Universal hashing [Carter and Wegman 1979].
- Let H be a family of functions mapping U to the set {0,...,m — 1}.
- His universal if for any x,y € U, where x * y, and h chosen uniformly at random in H,

Pr[a(x) = h(y)] < 1/m.

- Require that any & € H can be represented compactly and that we can compute the value /()
efficiently forany u € U.

Universal Hashing

- Positional number systems. For integers x and b, the base-r representation of x is x written in base
b.

+ Example.
+ (10)10=(1010)2 (1-23+0-22+1-21+0-20)
+ (107)10=(212)7 (2:72+1-71 +2-79)

Universal Hashing

- Hash function. Given a prime p and a = (asaz...an)p, define
h((x1%;...%,),) = ayx + ax, + ... + a,x, mod p

- Example.
p=7
ca=(107)10 = (212)7
© X =(@14)0 = (424)7
*hax)=2-4+1-2+2-4mod7 = 18mod7 = 4

+ Universal family.
-H={h, (aa,...a), € {0,...,p— 1}"}
- Choose random hash function from H ~ choose random a.
- H is universal (analysis next).
+ O(1) time evaluation.
+ O(1) space.
- Fast construction.

Uniform Hashing

Universal Hashing

- Lemma 1. For any prime p, any integer z # 0 mod p, and any two integers a, f:
az=pz modp = a=p modp.

+ Proof.
- Show (a — p) is divisible by p:
caz=pfz modp = (a—p)z=0 mod p.
By assumption z not divisible by p.
Since p is prime @ — ff must be divisible by p.

+ Thus a = f mod p as claimed.

- Goal. For random a = (a,a,...4,),, show that if x # y then Pr[/2,(x) = h,(»)] < 1/p.

- Recall: x = (x;x5...x,), and y = (y1y5.--¥,),:
XFY S (Xx...%), F (V1Yp---3), = X F yj for some j.

- Lemma 2. Let j be such that X; # Vj- Assume the coordinates a; have been chosen for all i # j. The probability of

choosing g; such that h,(x) = h,(y)is 1/p.

Ch () =h() & Z ax; mod p = 2 axy; modp & af—y; Z ax;—y) modp |=c
i=1 i=1 i

« There is exactly one value 0 < aj < p that satisfies ajz = ¢ mod p. fixed value z # 0 fixed value since
all a fixed for izj.

- Assume there was two such values g; and aj’.
- Then g;z =ajz mod p.
- Lemma1 = g;=a; mod p.Since q; < p and 4/ < p we have g; = a;.

- Probability of choosing ¢; such that h,(x) = h,(y)is 1/p.

Universal Hashing

- Lemma 2. Let j be such that x; # y;. Assume the coordinates aihave been chosen for all i # j. The

probability of choosing ; such that i1,(x) = h,(y) is 1/p.

- Theorem. For random a = (a,4,...4,), if X # y then
Pr{,(x) = h,()] = L/p.

+ Proof.
- E: the event that 1,(x) = h,(y).

- F}, : the event that the values g for i # j gets the sequence of values b.
- Lemma 2 shows that Pr[E F}] = 1/p for all b.
+ Thus

1 1 1
Pr[E] = Y PHE|F,]-Pi{F,] = Y S Pl = == Y, -PriF,) = >
b b b

Dictionaries

+ Theorem. We can solve the dictionary problem (without special assumptions) in:
- O(n) space.
+ O(1) expected time per operation (lookup, insert, delete).

Universal Hashing

- Other universal families.
+ For prime p > 0.

h, p,(x) = ax mod p
H={h,,lae{l,.,p-1},b€{0,...,p—1}}.

+ Hash function from k-bit numbers to /-bit numbers.
h,(x) = (ax mod 2%) > (k—1)
H = {h, | ais an odd integer in {1,....2x—1}}

