Randomized algorithms |l

Inge Li Gortz

Thank you to Kevin Wayne and Philip Bille for inspiration to slides

Randomized algorithms

Last week
- Contention resolution
- Global minimum cut
- Today
Expectation of random variables
- Guessing cards
Hash functions and hash tables

<o
>%¢ ¢
>>¢<¢
Y S

Random Variables and Expectation

Random variables

- Arandom variable is an entity that can assume different values.
- The values are selected “randomly”; i.e., the process is governed by a probability distribution.
- Examples: Let X be the random variable “number shown by dice”.
- X can take the values 1, 2, 3, 4, 5, 6.
- If it is a fair dice then the probability that X = 1 is 1/6:
- Pr[X=1] = 1/6.
- Pr[X=2] = 1/6.

Expected values

- Let X be a random variable with values in {x1,...Xxn}, Where xi are numbers.
- The expected value (expectation) of X is defined as

E[X]=) x-Pr[X=x)]
j=1

- The expectation is the theoretical average.

- Example:

- X =random variable “number shown by dice”
O 1
E[X]=) j-PrX =] =(1+2+3+4+5+6) = =35
j=1

Waiting for a first succes

Coin flips. Coin is heads with probability p and tails with probability 1 — p. How many independent
flips X until first heads?

Probability of X = j? (first succes is in round j)
PriX =jl=(1-py'p

Expected value of X:

O N _ PN -
EX]=) j-PrX=j =) j-U=-py-p =——) j-(1-py

(S 9]
° k_—x
k- x" = for x < 1.

Properties of expectation

- If we repeatedly perform independent trials of an experiment, each of which succeeds with
probability p > 0, then the expected number of trials we need to perform until the first succes is

1/p.

- If X is a 0/1 random variable, then E[X] = Pr[X = 1].

- Linearity of expectation: For two random variables X and Y we have

E[X+ Y] = E[X] + E[Y]

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. Can't remember what's been turned over already. Guess a card from full
deck uniformly at random. e ¢

Claim. The expected number of correct guesses is 1. . o

X, = 1if i" guess correct and zero otherwise.

X = the correct number of guesses = X; + ... + X,.

E[X]] = Pr[X,= 1] = l/n. — <@

CORC)

EX] = E[X, + = + X, = E[X,] + - + E[X,] = Un+ -+ 1/n= 1. o

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.
Claim. The expected number of correct guesses is ®(log n).

X. = 1 if i guess correct and zero otherwise.

X = the correct number of guesses = X, + ... + X,.

E[X] = E[X,]+ - +E[X,]=1n+-+1/2+1/1 = H,.

Inn < Hn) <Inn+1

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons.
Assuming all boxes are equally likely to contain each coupon, how many boxes before you have at
least 1 coupon of each type?

Claim. The expected number of steps is O(n log n).
Phase j = time between j and j 4+ 1 distinct coupons.

Xj = number of steps you spend in phase .

X = number of steps in total = X, + X; + - + X _;.
EIX]] = n/(n - j),

The expected number of steps:

n—1 n—1 n—1

E[X] =E[2Xj] = ZE[XJ-] = Zn/(n—j)=n- il/i=n-Hn.

J=0 J=0 Jj=0 i=1

Hashing

Dictionaries

- Dictionary problem. Maintain a dynamic set of S ¢ U subject to the following operations:
- Lookup(x): return true if x € S and false otherwise
- Insert(x): Set S =S U {x}
- Delete(x): Set S =S\ {x}

- Universe size. Typically |U| = 2264 and |S| << |U|.

- Satellite information. Information associated with each element.
- Goal. A compact data structure with fast operations.

- Applications. Many! A key component in other data structures and algorithms.

Chained Hashing
-+ Chained hashing [Dumey 1956].

- n=|[S|.

- Hash function. Pick some crazy, chaotic, random function h that maps U to {0, ..., m-1}, where
m = O(n).

- Initialise an array A[O, ..., m-1].

- AJi] stores a linked list containing the keys in S whose hash value is i.

Uniform random hash functions

- E.g. h(x) = x mod 11. Not crazy, chaotic, random.
- Suppose |U| = n2: For any hash function h there will be a set S of n elements that all map to the
same position!
=> we end up with a single linked list.

- Solution: randomization.

- For every element u € U: select h(u) uniformly at random in {0, ..., m-1} independently from
all other choices.

- Claim. The probability that h(u) = h(v) for two elements u # v is 1/m.

- Proof.

- m2 possible choices for the pair of values (h(u),h(v)). All equally likely.
- Exactly m of these gives a collision.

Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?

- Random variable L, = length of linked list for x. L= {yeS|hy) =hx)}

X

- Indikator random variable:

= {1 T =h0) L NI B = Prlh(y) = h()] = — for x # .

Y 0 otherwise s m

- The expected length of the linked list for x:

1 1
E[Lx]zE[ZIy} = ZE[Iy] = 1+ Z — = 1+(n—1)-Z=®(1).

yeS yeS yeS\{x}

Chained Hashing with Random Hash Function

+ Constant time and O(n) space for the hash table.

- But:
- Need O(|U|) space for the hash function.
- Need a lot of random bits to generate the hash function.
- Need a lot of time to generate the hash function.

- Do we need a truly random hash function?

- When did we use the fact that h was random in our analysis?

Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?

- Random variable L, = length of linked list for x. L= {yeS|hy)=hkx))}

X

- Indikator random variable:

= {1 T =R N B =[Prlh() = ()] = — for x # .

Y 0 otherwise s m

- The expected length of the linked list for x:

1 1
E[Lx]zE[Zly} = ZE[Iy] = 1+ Z — = 1+(n—1)-z=®(1).

yeS yeS yeS\{x}

Universal hash functions

- Universal hashing [Carter and Wegman 1979].
- Let H be a family of functions mapping U to the set {0,...,m — 1}.

- H is universal if for any x, y € U, where x # y, and h chosen uniformly at random in H,

Pr[h(x) = h(y)] < 1/m.

- Require that any 7 € H can be represented compactly and that we can compute the value h(u)
efficiently foranyu € U .

Universal Hashing

- Positional number systems. For integers x and b, the base-r representation of x is x written in base
b.

- Example.
* (10)10=(1010)2 (1-23+0-22+1-27+ 0-20)
+ (107)10=(212)7 (2-72+1-71 4+ 2-79)

Universal Hashing

- Hash function. Given a prime p and a = (a1az...a)p, define
h((xX1%,...%,),) = ayx; + ax, + ... + a,x, mod p

- Example.
- p=7
- a=(107)10 = (212)7
* X=(214)10 = (424)7
- haX)=2-4+1-2+2-4mod7 = 18mod7 = 4

A A
N =~ || =
e A |

- Universal family. =
- H={h, (qa,...a,), € {0,...,p — 1}"} [T —fel]
+ Choose random hash function from H ~ choose random a.
-+ His universal (analysis next).
+ O(1) time evaluation.
- O(1) space.
- Fast construction.

Uniform Hashing

- Lemma 1. For any prime p, any integer z # 0 mod p, and any two integers a,

az=pz modp = a=p modp.

* Proof.
- Show (a —) is divisible by p:
- az=pz modp = (a—p)z=0 mod p.
- By assumption z not divisible by p.
- Since p is prime a — # must be divisible by p.
- Thusa = f mod p as claimed.

Universal Hashing

. Goal. For random a = (a,a,...a,),, show that if x # y then Pr[h,(x) = h (y)] < 1/p.
- Recall: x = (xyx,...x,), and y = (¥ y;...Y,),

x#Fy e (xx...x,), # (VY,.--y,), = X; # y; for some j.

. Lemma 2. Let j be such that X; * Y;- Assume the coordinates g; have been chosen for all I # j. The probability of
choosing a; such that 7,(x) = h,(y) is 1/p.

r r
- h () =h(y) < 2 ax; mod p = Z axy; modp & ax—y)= Z a(x;—y;) mod p |=c
i=1 i=1 I#]

T

- There is exactly one value 0 < a; < p that satisfies ajz = ¢ mod p. fixed value z # 0 fixed value since
all a; fixed for izj.

. Assume there was two such values a; and aj’.

- Then a;z = a;z mod p.

— / : / _ /
- Lemma 1 = a; = q, mod p. Since a; < panda; < p we have a; = a;.

- Probability of choosing a; such that h,(x) = h,(y)is 1/p.

Universal Hashing

- Lemma 2. Let j be such that x; # y;. Assume the coordinates aihave been chosen for all i # j. The
probability of choosing a; such that /,(x) = h,(y) is 1/p.

- Theorem. For random a = (a,4,...4,),, if x # y then
Pr[h,(x) = h,0)] = Up.

- Proof.
- E': the event that /1 (x) = h (y).

- F : the event that the values g; for i # j gets the sequence of values b.
- Lemma 2 shows that Pr[E F,] = 1/p for all b.
* Thus

1 1 1
PI'[E] = ZPI‘[E | Fb] . Pr[Fb] — Z; . PI'[Fb] N — ;Z 'PI'[Fb] =;
b b b

Dictionaries

- Theorem. We can solve the dictionary problem (without special assumptions) in:
- O(n) space.
- O(1) expected time per operation (lookup, insert, delete).

Universal Hashing

- Other universal families.
+ For prime p > 0.

h,,(x) =ax mod p
H={h,,|a€{l,..,p—1},b€{0,..,p—-1}}.

- Hash function from k-bit numbers to [-bit numbers.
h,(x) = (ax mod 25 > (k—1)
H={h,|aisanoddintegerin {1,...,2K - 1}}

