String Matching

e String matching problem:
e string T (text) and string P (pattern) over an alphabet 2.
String Matching e [T|=n, |P|=m.

Inge Li Gortz * Report all starting positions of occurrences of P in T.

P=ababaca
T=bacbababababacab

Strings String Matching

_ [sumxrs | ,
+ £ empty string e Knuth-Morris-Pratt (KMP)
« prefix/suffix: v=xy: s il

* x prefix of v, if y # € X is a proper prefix of v ECTEE * Finite automaton
* y suffix of v, if y # € X is a proper suffix of v.

- Example: S = aabca
 The suffixes of S are: aabca, abca, beca, ca and a.

* The strings abca, beca, ca and a are proper suffixes of S.

A naive string matching algorithm

[bla|c|bla[blalb|albla|blalc|alb]
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca

ababaca

Improving the naive algorithm

P=aaababa

T=|aaak)aa3k)ababeicabb
aaabalba

Improving the naive algorithm

P=aaababa

T= a a a b o

aaababa
aaaaahbhhbahba

Improving the naive algorithm

P=aaababa

T= aaabaa o

aaababa
aaababa
aaababa

Improving the naive algorithm

P=aaababa

T-aaabaaaabano

aaak)alh
aaallaba
aaababa
aeﬂlallaabk»baza

Improving the naive algorithm

P=aaababa

T-aaabaaaabano

aaak)alh
aaallaba
aaababa

If we matched 5 characters aaababa
from T and then fail:
compare failed character to
2nd character in P

If we matched 3 characters If we matched all characters
from T and then fail: from T:

compare failed character to compare next character to
3nd character in P 2nd character in P

Improving the naive algorithm

P=aaababa

matched a a a
#matched 3 5 7
if fail
compare to 3 2 2
If we matched & characters If we matched 3 characters If we matched all characters
from T and then fail: from T and then fail: from T:
compare failed character to compare failed character to compare next character to
2nd character in P 3nd character in P 2nd character in P

Improving the naive algorithm

P=aaababa

matched

a a a
#matched 3 5 7
if fail

compare to 3 2 2

If we matched 5 characters If we matched 3 characters If we matched all characters
from T and then fail: from T and then fail: from T:

compare failed character to compare failed character to compare next character to
2nd character in P 3nd character in P 2nd character in P

Improving the naive algorithm

P=aaababa

matched

#matched

if fail

compare to

If we matched & characters
from T and then fail:
compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:
compare failed character to
3nd character in P

If we matched all characters
from T:
compare next character to
2nd character in P

KMP and r-array

e KMP: P = aaababa.
JT-array

matched

a
#matched 1
0

if fail go to 0

O 12
i

In state i after reading character j of T
P[1...il is the longest prefix of P that is a
suffix of T[1..j]

accepting state

KMP and r-array

e KMP: P = aaababa.

matched

a
#matched 1
0

if fail go to 0

e Matching:

T=|§|aabaaababaa

KMP

e KMP: Can be seen as finite automaton with failure links:

e Failure link: longest prefix of P that is a proper suffix of what we have matched until
NOW.

e In state i after reading T[j]: P[1..] is the longest prefix of P that is a suffix of T[1...j].

e Can follow several failure links when matching one character:

KMP Analysis

+ Analysis. [T|=n, |P|=m.
+ How many times can we follow a forward edge?
* How many backward edges can we follow (compare to forward edges)?
« Total number of edges we follow?

+ What else do we use time for?

KMP Analysis

* Lemma. The running time of KMP matching is O(n).
» Each time we follow a forward edge we read a new character of T.
+ #backward edges followed < #forward edges followed < n.

« If in the start state and the character read in T does not match the forward
edge, we stay there.

- Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed < 2n.

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

» Computing failure links: Use KMP matching algorithm.

| longest prefix of P that is a proper suffix of ‘abab’ |

@O LrGLIGLYGEFGIFGE

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have

matched until now.
st
n

| longest prefix of P that is a suffix of ‘bab’ | P

8oL rQEI QL GEFGUNGE: A

+ Computing failure links: Use KMP matching algorithm.

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

+ Computing failure links: Use KMP matching algorithm.

st
| longest prefix of P that is a suffix of ‘bab’ | PIN

oce@eee TR

|Can be found by using KMP to match ‘bab'|

Computation of failure links

+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

12 3 4 5 6 7

P:@babaca

Rabin-Karp

Fingerprinting

Rabin-Karp

e Fingerprint: construct randomized fingerprint for P and each substring of T’
of length m.

e Assume (wlog.) binary alphabet.

F(P)=Y 2""P[i F(Ty) =Y 2" 'T[s +i—1]
=1 =1
P[1 0 1 T[1]o]1]o[1]1]o]1]0]

FP) =221 +210+201=5

Rabin-Karp

e Fingerprint: construct randomized fingerprint for P and each substring of T

of length m.

® Assume (wlog.) binary alphabet.

m

F(P) =Y 2""P[i

i=1

Pi1 0 1

FP)=221+210+201=5

m

F(T,)=> 2" "'T[s+i— 1]

=1

T[10/1]o1 1 0 10|

F(T) =

Rabin-Karp

e Fingerprint: construct randomized fingerprint for P and each substring of T

of length m.

® Assume (wlog.) binary alphabet.

m

F(P)=Y 2""P[i

i=1

Pi1 0 1

F(P) =221 +21:0+201 =5

m

F(T)=> 2" 'T[s+i—1]

=1

T[1/0 1]o 1101 0]

F(T1) =221 +21-0+ 201 =5

Rabin-Karp
F(P) = Zﬂ 2" P[]
=1

Pi1 0 1

F(P)=221+21:0+201 =5

m

F(T) =Y 2""'T[s+i—1]

T[1 0/ 1o/ 1101 0]

F(T)=221+21:0+201=5

Rabin-Karp
F(P) = i 2" P[]
=1

Pi1 0 1

F(P) =221 +21:0+201 =5

F(Ts) = i 2M T [s 4 i — 1]

i=1

T/1[o/1 o]1/1 0 1 0]

F(Ti) =221 +210+201 =5
F(To) =220 + 211 + 200 = 2

Rabin-Karp
F(P) =Y _2""P[i]
i=1

P11 0 1

FP)=221+210+201=5

F(T,) = iw—iﬂs +i—1]

T 1/0[1 0 1]1 01 0]

F(T)=221+21-0+201 =5
F(To) = 22:0 + 211 + 200 = 2
F(Te) = 221 + 210 + 201 =5

Rabin-Karp
F(P)=Y_2""P[i
=1

P11 0 1

F(P) =221 +210+201=5

F(T,)=> 2" 'T[s+i—1]
i=1

T 1/0 1[0/ 1]1]0o1 0]

F(T)=221+21-0+201 =5
F(To) =220 + 211 + 200 = 2
F(Te) =221+ 210+ 201 =5

)

F(Ts) =220+ 21 + 201 =3

Rabin-Karp
F(P) = Zﬂ 2" Pli
=1

Pi1 0 1

F(P)=221+21:0+201=5

m

F(T) =Y 2""'T[s+i—1]

T1]o][1]o[1]1]0o]1]0]

F(T)=221+21:0+201 =5

F(T2) = 22:0 + 21+1 + 200 = 2
F(Ts) =221 + 210+ 201 =5
F(T4) =220 + 211 + 201 = 3

)
)
(Ts)
)
)

F(Te) =221 + 211+ 200 = 6

Rabin-Karp
F(P) = i 2" Pli]
=1

Pi1 0 1

F(P) =221 +21:0+201 =5

P occurs in T at position s
=
F(P) = F(Ts)

F(Ts) = i 2M T [s 4 i — 1]

T[1Jo]1]o1]1]o]1]0]

I
N
N
o
+
~
o
T
N
©
=
I
(@)}

_n
-
w
I
N
N
-
+
N
e}
7
N
°
o
I
(@)}

I
=
(9]
1}
N
N
Y
+
S
Y
+
N
o
o
1}
()}

Rabin-Karp
F(P) =Y _2""P[i]
i=1

P11 0 1

FP)=221+210+201=5

F(T,) = iw—iﬂs +i—1]

T[1]of1Jo]1]1]0]1]0]

F(Ti)=221+21:0+201 =5

Rabin-Karp
F(P)=Y_2""P[i
=1

P11 0 1

F(P) =221 +210+201=5

P occurs in T at position s
<
F(P) = F(Ts)

F(T,)=> 2" 'T[s+i—1]
i=1

T[1]o]1]o]1]1]0]1]0]

F(Ti) =221 +21:0+201 =5

)
F(T2) =220+ 211 +20:0=2
. — F(Tg) =221 +21:0+ 201 =5
P occurs in T at position s
o F(Ts) =220+ 211+ 201 =3
F(P) = F(Ty) F(Ts) =221 + 2111 +200=6
F(Te) =221+ 210+ 201 =5
F(T7) =220 + 211 + 200 = 2
Rabin-Karp

F(P) = Z 2m=i P[4]

Pi1 0 1

F(P)=221+21:0+201=5

P occurs in T at position s
=4
F(P) = F(Ts)

m

F(T) =Y 2""'T[s+i—1]

T 1[o1]0]1/1 01 0]

F(T) =221 4210 +201 =5
F(T2) =

Rabin-Karp
F(P) = i 2" Pli]
=1

Pi1 0 1

F(P) =221 +21:0+201 =5

P occurs in T at position s
=
F(P) = F(Ts)

F(Ts) = i 2M T [s 4 i — 1]

T/1[0o/1 o]1/1 0 1] 0]

F(T) =221 42104201 =5
F(T2) = (F(T) - 221)2 + 200 = 2

Rabin-Karp

Rabin-Karp

e Can compute F(Ts+1) from F(T):

F(Ts41)=2-F(Tg) = 2™T[s] + T[s + m + 1]
e m large: Numbers too big to calculate in constant time.

e Solution: randomization. Choose prime p < n’m randomly.

F,(P)=F(P) modp=>» 2" "P[i] mod p
i=1
Fp(T.) = F(T.) modp=>» 2" 'T[s+i—1] mod p
=1

F(P)=Y 2""Pl] F(T,) =) 2" " T[s+i—1]
i=1 i=1
Pl1 0 1 T 1]/0[1 0/1]1]0]1 0]
FP)=221 +210+201 =5 F(Ti) =221 +21:0+ 201 =5
F(T2) = (F(T1) - 22:1)-2 + 20-0 =2
P occurs in T at position s F(Tg) = (F(T2) - 220)2 + 201 =5
<
F(P) = F(Ty
Rabin-Karp

e Can compute Fp(Ts+l) from Fp(TS) in constant time:

Fy(Ts41) =2+ (Fp(Ts) mod p) — (2™ mod p)-T[s] + T[s +m —1] mod p
e P matches T at position s = Fp(P) = Fp(T).
e Opposite not true.

¢ p random prime < n’m = probability of false match < 2.53/m.

Rabin-Karp

¢ Rabin-Karp:
e Choose random prime < n2m.
e Compute Fp(P).

e For each position s in T compute Fp(Ts) and compare to Fp(P). If Fp(P) = Fp(Ts)
declare probable match or check explicitly.

e Time: ©(m + n) randomized Monte Carlo algorithm (with errors).

e Can verify all candidate matches in O(n) time.

® | as Vegas algorithm (no errors, expected running time) with expected running
time O(n):

* Run algorithm
o Verify

® Rerun if errors.

