
String Matching

Inge Li Gørtz

String Matching

• String matching problem:

• string T (text) and string P (pattern) over an alphabet Σ.

• |T| = n, |P| = m.

• Report all starting positions of occurrences of P in T.

P = a b a b a c a
T = b a c b a b a b a b a b a c a b

Strings

• ε: empty string

• prefix/suffix: v=xy:

• x prefix of v, if y ≠ ε x is a proper prefix of v

• y suffix of v, if y ≠ ε x is a proper suffix of v.

• Example: S = aabca

• The suffixes of S are: aabca, abca, bca, ca and a.

• The strings abca, bca, ca and a are proper suffixes of S.

Suffix of S

S

Prefix of S

String Matching

• Knuth-Morris-Pratt (KMP)

• Finite automaton

A naive string matching algorithm

a b a b a c a
b a c b a b a b a b a b a c a b

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a

a a a b a a a b a b a b a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a a a b a b a b a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b aa a a b a a aa a a b a b aa a a b a a a

a a a b a a a a b a b a a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b a
a a a b a b a

a a a b a a a a b a b a a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b a

a a a b a b a
a a a b a b a

a a a b a b aa a a b a b aa a a b a b aa a a b a b aa a a b a b a

a a a b a a a a b a b a a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b a
a a a b a b a

a a a b a b aIf we matched 5 characters
from T and then fail:

compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:

compare failed character to
3nd character in P

If we matched all characters
from T:

compare next character to
2nd character in P

Improving the naive algorithm

P = a a a b a b a

If we matched 5 characters
from T and then fail:

compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:

compare failed character to
3nd character in P

If we matched all characters
from T:

compare next character to
2nd character in P

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7

if fail
compare to 3 2 2

Improving the naive algorithm

P = a a a b a b a

If we matched 5 characters
from T and then fail:

compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:

compare failed character to
3nd character in P

If we matched all characters
from T:

compare next character to
2nd character in P

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7

if fail
compare to 3 2 2

a a a b a b a
1 2 3 4 5 6

Improving the naive algorithm

P = a a a b a b a

If we matched 5 characters
from T and then fail:

compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:

compare failed character to
3nd character in P

If we matched all characters
from T:

compare next character to
2nd character in P

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7

if fail
compare to 1 1 2 3 1 2 1 2

a a a b a b a
1 2 3 4 5 6

• KMP: P = aaababa.

KMP and -arrayπ

a a a b a b a
1 2 3 4 5 6

starting state
accepting state

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7
if fail go to 0 0 1 2 0 1 0 1

In state i after reading character j of T:

P[1…i] is the longest prefix of P that is a

suffix of T[1..j]

-arrayπ

• KMP: P = aaababa.

• Matching:

KMP and -arrayπ

a a a b a b a
1 2 3 4 5 6

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7
if fail go to 0 0 1 2 0 1 0 1

a a a b a a a b a b a aT =

-arrayπ

KMP

• KMP: Can be seen as finite automaton with failure links:

• Failure link: longest prefix of P that is a proper suffix of what we have matched until
now.

• In state i after reading T[j]: P[1..i] is the longest prefix of P that is a suffix of T[1…j].

• Can follow several failure links when matching one character:

a b a b a aT =

a b a b a c a
1 2 3 4 5 6

KMP Analysis

• Analysis. |T| = n, |P| = m.

• How many times can we follow a forward edge?

• How many backward edges can we follow (compare to forward edges)?

• Total number of edges we follow?

• What else do we use time for?

KMP Analysis

• Lemma. The running time of KMP matching is O(n).

• Each time we follow a forward edge we read a new character of T.

• #backward edges followed ≤ #forward edges followed ≤ n.

• If in the start state and the character read in T does not match the forward
edge, we stay there.

• Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed ≤ 2n.

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a proper suffix of ‘abab'

a b a b a c a
1 2 3 4 5 6

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a suffix of ‘bab'

a b a b a c a
1 2 3 4 5 6

Longest suffix of S
that is a prefix of P

P
S

Longest prefix of P
that is a suffix of S

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

a b a b a c a
1 2 3 4 5 6

longest prefix of P that is a suffix of ‘bab'

a b a b a c a
1 2 3 4 5 6

Can be found by using KMP to match ‘bab'

P
S

Longest suffix of S
that is a prefix of P

Longest prefix of P
that is a suffix of S

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

1 2 3 4 5 6 7

a b a b a c aP =

a b a b a c a
1 2 3 4 5 6

Rabin-Karp

Fingerprinting

• Fingerprint: construct randomized fingerprint for and each substring of
of length .

• Assume (wlog.) binary alphabet.

P T
m

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

T 1 0 1 0 1 1 0 1 0P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

• Fingerprint: construct randomized fingerprint for and each substring of
of length .

• Assume (wlog.) binary alphabet.

P T
m

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) =

• Fingerprint: construct randomized fingerprint for and each substring of
of length .

• Assume (wlog.) binary alphabet.

P T
m

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5
F(T2) = 22∙0 + 21∙1 + 20∙0 = 2

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5
F(T2) = 22∙0 + 21∙1 + 20∙0 = 2
F(T3) = 22∙1 + 21∙0 + 20∙1 = 5

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5
F(T2) = 22∙0 + 21∙1 + 20∙0 = 2
F(T3) = 22∙1 + 21∙0 + 20∙1 = 5
F(T4) = 22∙0 + 21∙1 + 20∙1 = 3

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5
F(T2) = 22∙0 + 21∙1 + 20∙0 = 2
F(T3) = 22∙1 + 21∙0 + 20∙1 = 5
F(T4) = 22∙0 + 21∙1 + 20∙1 = 3
F(T5) = 22∙1 + 21∙1 + 20∙0 = 6

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5
F(T2) = 22∙0 + 21∙1 + 20∙0 = 2
F(T3) = 22∙1 + 21∙0 + 20∙1 = 5
F(T4) = 22∙0 + 21∙1 + 20∙1 = 3
F(T5) = 22∙1 + 21∙1 + 20∙0 = 6
F(T6) = 22∙1 + 21∙0 + 20∙1 = 5
F(T7) = 22∙0 + 21∙1 + 20∙0 = 2

P occurs in T at position s

F(P) = F(Ts)
⇔

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5
F(T2) = 22∙0 + 21∙1 + 20∙0 = 2
F(T3) = 22∙1 + 21∙0 + 20∙1 = 5
F(T4) = 22∙0 + 21∙1 + 20∙1 = 3
F(T5) = 22∙1 + 21∙1 + 20∙0 = 6
F(T6) = 22∙1 + 21∙0 + 20∙1 = 5
F(T7) = 22∙0 + 21∙1 + 20∙0 = 2

P occurs in T at position s

F(P) = F(Ts)
⇔

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5

P occurs in T at position s

F(P) = F(Ts)
⇔

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5

P occurs in T at position s

F(P) = F(Ts)
⇔

F(T2) =

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5

F(T2) = (F(T1) - 22∙1)∙2 + 20∙0 = 2

P occurs in T at position s

F(P) = F(Ts)
⇔

F(T2) =

Rabin-Karp

F (P) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5

T 1 0 1 0 1 1 0 1 0

F(T1) = 22∙1 + 21∙0 + 20∙1 = 5

F(T2) = (F(T1) - 22∙1)∙2 + 20∙0 = 2

P occurs in T at position s

F(P) = F(Ts)
⇔

F(T3) = (F(T2) - 22∙0)∙2 + 20∙1 = 5

• Can compute F(Ts+1) from F(Ts):

• large: Numbers too big to calculate in constant time.

• Solution: randomization. Choose prime randomly.

m

p ≤ n2m

Rabin-Karp

F (Ts+1) = 2 · F (Ts)� 2mT [s] + T [s+m+ 1]

Fp(Ts) = F (Ts) mod p =
mX

i=1

2m�iT [s+ i� 1] mod p

Fp(P) = F (P) mod p =
mX

i=1

2m�iP [i] mod p

Rabin-Karp

• Can compute from in constant time:

• matches at position .

• Opposite not true.

• random prime probability of false match .

Fp(Ts+1) Fp(Ts)

P T s ⇒ Fp(P) = Fp(T)

p ≤ n2m ⇒ ≤ 2.53/m

Fp(Ts+1) = 2 · (Fp(Ts) mod p)� (2m mod p) · T [s] + T [s+m� 1] mod p

Rabin-Karp

• Rabin-Karp:

• Choose random prime ≤ n2m.

• Compute Fp(P).

• For each position s in T compute Fp(Ts) and compare to Fp(P). If Fp(P) = Fp(Ts)
declare probable match or check explicitly.

• Time: Θ(m + n) randomized Monte Carlo algorithm (with errors).

• Can verify all candidate matches in O(n) time.

• Las Vegas algorithm (no errors, expected running time) with expected running
time O(n):

• Run algorithm

• Verify

• Rerun if errors.

