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String Matching

• String matching problem: 


• string T (text) and string P (pattern) over an alphabet Σ.


• |T| = n, |P| = m.


• Report all starting positions of occurrences of P in T.

P = a b a b a c a
T = b a c b a b a b a b a b a c a b

Strings

• ε: empty string

• prefix/suffix: v=xy:


• x prefix of v, if y ≠ ε x is a proper prefix of v

• y suffix of v, if y ≠ ε x is a proper suffix of v.


• Example: S = aabca


• The suffixes of S are: aabca, abca, bca, ca and a.


• The strings abca, bca, ca and a are proper suffixes of S.

Suffix of S

S

Prefix of S

String Matching

• Knuth-Morris-Pratt (KMP) 


• Finite automaton
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a a a b a b aIf we matched 5 characters 
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compare failed character to 
2nd character in P

If we matched 3 characters 
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from T: 


compare next character to 
2nd character in P
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Improving the naive algorithm

P =  a a a b a b a

If we matched 5 characters 
from T and then fail: 

compare failed character to 
2nd character in P

If we matched 3 characters 
from T and then fail: 

compare failed character to 
3nd character in P

If we matched all characters 
from T: 


compare next character to 
2nd character in P

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7

if fail 
compare to 1 1 2 3 1 2 1 2

a a a b a b a
1 2 3 4 5 6

• KMP: P = aaababa.

KMP and -arrayπ

a a a b a b a
1 2 3 4 5 6

starting state 
accepting state 

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7
if fail go to 0 0 1 2 0 1 0 1

In state i after reading character j of T: 

P[1…i] is the longest prefix of P that is a 

suffix of T[1..j]

-arrayπ

• KMP: P = aaababa.


• Matching:  

KMP and -arrayπ

a a a b a b a
1 2 3 4 5 6

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7
if fail go to 0 0 1 2 0 1 0 1

a a a b a a a b a b a aT = 

-arrayπ

KMP

• KMP: Can be seen as finite automaton with failure links:


• Failure link: longest prefix of P that is a proper suffix of what we have matched until 
now.


• In state i after reading T[j]: P[1..i] is the longest prefix of P that is a suffix of T[1…j].


• Can follow several failure links when matching one character:

a b a b a aT = 

a b a b a c a
1 2 3 4 5 6



KMP Analysis

• Analysis.  |T| = n, |P| = m.


• How many times can we follow a forward edge?


• How many backward edges can we follow (compare to forward edges)?


• Total number of edges we follow?


• What else do we use time for?

KMP Analysis

• Lemma. The running time of KMP matching is O(n).


• Each time we follow a forward edge we read a new character of T.


• #backward edges followed ≤ #forward edges followed ≤ n.


• If in the start state and the character read in T does not match the forward 
edge, we stay there.


• Total time = #non-matched characters in start state + #forward edges 
followed + #backward edges followed ≤ 2n. 

• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.


• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a proper suffix of ‘abab' 

a b a b a c a
1 2 3 4 5 6

• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.


• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a suffix of ‘bab' 

a b a b a c a
1 2 3 4 5 6

Longest suffix of S 
that is a prefix of P

P
S

Longest prefix of P 
that is a suffix of S



• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.


• Computing failure links: Use KMP matching algorithm.

Computation of failure links

a b a b a c a
1 2 3 4 5 6

longest prefix of P that is a suffix of ‘bab' 

a b a b a c a
1 2 3 4 5 6

Can be found by using KMP to match ‘bab'

P
S

Longest suffix of S 
that is a prefix of P

Longest prefix of P 
that is a suffix of S

• Computing failure links: As KMP matching algorithm (only need failure links 
that are already computed).


• Failure link: longest prefix of P that is a proper suffix of what we have 
matched until now.

Computation of failure links

1 2 3 4 5 6 7

a b a b a c aP = 

a b a b a c a
1 2 3 4 5 6

Rabin-Karp

Fingerprinting

• Fingerprint: construct randomized fingerprint for  and each substring of  
of length .


• Assume (wlog.) binary alphabet.

P T
m

Rabin-Karp

F (P ) =
mX

i=1

2m�iP [i] F (Ts) =
mX

i=1

2m�iT [s+ i� 1]

T 1 0 1 0 1 1 0 1 0P 1 0 1

F(P) = 22∙1 + 21∙0 + 20∙1 = 5
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• Can compute F(Ts+1) from F(Ts): 


•  large: Numbers too big to calculate in constant time.


• Solution: randomization. Choose prime  randomly. 

m

p ≤ n2m

Rabin-Karp

F (Ts+1) = 2 · F (Ts)� 2mT [s] + T [s+m+ 1]

Fp(Ts) = F (Ts) mod p =
mX

i=1

2m�iT [s+ i� 1] mod p

Fp(P ) = F (P ) mod p =
mX

i=1

2m�iP [i] mod p

Rabin-Karp

• Can compute  from  in constant time: 


•  matches  at position . 


• Opposite not true.


•  random prime probability of false match .

Fp(Ts+1) Fp(Ts)

P T s ⇒ Fp(P) = Fp(T )

p ≤ n2m ⇒ ≤ 2.53/m

Fp(Ts+1) = 2 · (Fp(Ts) mod p)� (2m mod p) · T [s] + T [s+m� 1] mod p

Rabin-Karp

• Rabin-Karp:


• Choose random prime ≤ n2m.


• Compute Fp(P).


• For each position s in T compute Fp(Ts) and compare to Fp(P). If Fp(P) = Fp(Ts) 
declare probable match or check explicitly.


• Time: Θ(m + n) randomized Monte Carlo algorithm (with errors).


• Can verify all candidate matches in O(n) time.


• Las Vegas algorithm (no errors, expected running time) with expected running 
time O(n):


• Run algorithm


• Verify


• Rerun if errors.


